(1010 -Hit:-70yras latest in television - servicing - high fidelity

In this issue:
Dscilloscope Patterns and Amplifier Diagnosis

High-Quality Circuits: Tone Compensation
U.h.f. Television Antennas

Servicing u.h.f. TV
TV Signal Tracing Practices and Problems

Heterodyne Freqmeter Uses Transistors

Automatic Headlight Dimmer

304
U. S. and CANADA

Experimental Communication with Light Beams

Look at the

Selling Power of the RCA Radio Battery Package

Smart RCA package design means faster $^{\text {mat }}$ sales, greater inventory turnover for radio dealers and servicemen selling RCA Radio Batteries. This outstanding package styling is another example of the powerful sales appeal of the Radio Battery for the Radio Trade.

Call your RCA Battery Distributor for fast, reliable service. Stock, sell and promote RCA Batteriesthe Radio Battery for the Radio Trade.

ADVANCE! Raise your earning power-learn RADIO-THLEVISION=GLECTRONICS by SHOP-METHOD HOME TRAINING
 Get Master Shop-Method MASTER ALK Get Master Shop-Method

GOOD JOBS AWAIT THE TRAINED RADIO-TV TECHNICIAN
There is a place for you in the great Radio-TelevisionElectronics industry when you are trained as National Schools will train you at home!

Trained technicians are in growing demand at good pay -in manufacturing, broadcasting, television, communications, radar, research laboratories, home Radio-TV service, and other branches of the field. National Schools Master Shop-Method Home Training, with newly added lessons and equipment, trains you in your spare time, right in your own home, for these fascinating opportunities. OUR METHOD IS PROVED BY THE SUCCESS OF NATIONAL SCHOOLS TRAINED MEN, ALL OVER THE WORLD, SINCE 1905.

EARN WHILE YOU LEARN

Many National students pay for all or part of their training with spare time earnings. We'll show you how you can do the same! Early in your training, you receive "Sparetime Work" Lessons which will enable you to earn extra money servicing neighbors' and friends' Radio and Tele-
 Home Training from
an Established Prac-
tical tical Resident School
tical
with its own Trining almost 50 Years of

- alt
and Shops, Laboratories, Studios Troining Ambitious Men.
Succesful Experience in

National Schools Training is All-Embracing

National Schools prepares you for your choice of many job opportunities. Thousands of home, portable, and auto radios are being sold daily-more than ever before. Television is sweeping the country, too. Co-axial cables are now bringing Television to more cities, towns, and farms every day! National Schools' complete training program qualifies you in all fields. Read this partial list of opportunities for trained technicians:

Business of Your Own - Broadcasting
Radio Manufacłuring, Sales, Service - Telecasting
Television Manufacturing, Sales, Service
Laboratories: Installation, Maintenance of Electronic Equipment Electrolysis, Call Systems
Garages: Auto Radio Sales, Service
Sound Systems and Telephone Companies, Engineering Firms Theatre Sound Systems, Police Radio
And scores of other good jobs in many related fields.

TELEVISION TRAINING

You get a complete series of up-to-theminute lessons covering all phases of repairing, servicing and construction. The same lesson texts used by resident students in our
 modern and complete Television broadcast studios, laboratories and classrooms!

FREE! RADIO-TV BOok
AND SAMPLE LESSON! Send roday for
National Schools' new, illustrated Book of Oppor-

LEARN BY DOING
You receive and keep all the modern equipment shown above, including tubes and valuable, professional quality Multitester. No extra tunity in Radio-TelevisionElectronics, and an actual Sample Lesson.-No cost-

This

 course also no obligotion, Use the offered in Span-ish and Portuguese cupon now-we'll answer by return

APPROVED FOR

VETERANS AND
NON-VETERANS
Check coupon below
Both
Resident and Home Study Courses Offered!

NATIONAL SCHOOLS

os angeles 37, California. established 190 IN CANADA: 193 E. HASTINGS STREET,VANCOUVER,B.C

FIND OUT NOW - MAIL COUPON TODAY!

NATIONAL SCHOOLS, Dept. RG-103
Mail in envelope 4000 South Figueroa Street or paste on Los Angeles 37, California postal card
Send free Radio-TV Electronics book and free sample lesson. I understand no salesman will call on me.

NAME AGE
ADDRESS
CITY
\qquad !
\qquad
\square Check here if released from service less than 4 years ago. \square Check here if interested in Resident Training at Los Angeles.

Hugo Gernsback Editor and Publisher M. Harvey Gernsback

Editorial Director Fred Shunaman

Managing Editor Robert F. Scolt

W2PWG. Technical Editor Jerome Kass

Associate Editor

1. Queen

Editorial Associate Matthew Mand

Television Consultant Charles A. Phelps

Angie Pascale
Production Manager
Wm. Lyon MeLaughlin
Tech. Illustration Director Sol Ehrlich

Art Director
Lee Robinson General Manager John J. Lamson Sales Manager G. Aliquo

Circulation Manager Adam J. Smith

Director, Newsstand Sales Robert Fallath

Promotion Manager
F原 Member
Magazine Publishers Association

ON THE COVER (See Poge 46) Model Rae George is here shown operating one of Leslie Gould's latest light-beam transmitters, in typical Connecticut terrain.
Color original by Avery Slack

CONTENTS

OCTOBER, 1953
Editorial (Page 33)
Wanted:-Inertialess Speakers by Huga Gernsback 33
Audio-High Fidelity (Pages 34-45)
Oscilloscape Patterns and Amplifier Diagnosis . .by Narman H. Crawhurst 34 High-Quality Audia, Part II (Laud Speakers) by Richard H. Darf 37 Extending Amplifier Bandwidth, Part II by Jaseph Marshall 40
High-Quality Circuits (Tane and Loudness Contrals) .by John K. Frieborn 42
Circuit Shorts . by Robert F. Scatt 44
Broadcasting and Communications (Pages 46-47)
Experimental Communication with Light Beams (Cover Feature)

Servicing-Test Instruments (Pages 61-86)
Mr. Pastal Card has Selling Power by B. W. Welz bl
Midget Portables and Their Problems by Paul Baller 62
$\begin{array}{ll}\text { Capacitance and the Ratia Detector Cy Cyrus Glickstein } & 78 \\ \text { Short Cut Service on A.C.-D.C. Radios Fanks Tryon } & 84\end{array}$
Amoteur (Pages 88-94)
Heterodyne Frequency Meter Uses Pair of Transistors . . by Rufus P. Turner 88
Construction (Pages 96-112)
Inductance Meter Uses Heterodyne Principle 96
Automatic Headlight Dimmer by Jack Marley 99

Electronics (Pages 114-119)
Charactran Tube has Many Commercial Applicatians
by S. M. Milanawski 114
New Design (Pages 120-129)
Understanding Mechanical Filters by Leslie L. Burns, Jr. 120
New Tubes 127
Departments

The Radia Manth	18	Technates	140	Peaple	159
Radio Business. .	26	Miscellany.	143	Cammunicatians	163
With the		Radio-Electronic		Electronic	
Technician.	130	Circuits.	145	Literature. .	166
New Devices	132	Try This One.	148	Book Reviews..	168

New Devices... 132 Try This One... 148
Questian Bax... 152

You use this 16 mm . Movie Projector and Films at HOME
Thanks to this exclusive D.T.I. home training aic, many important Television-Radio fundamentals quickly become "movie clear." Now you can actually see electrons on the march and other "hidden aclions" - a wonderful advantage that's almosi like having aifeacher in your home.
RIGHT? At Home You Build and Keep this 5-INCH Oscilloscope
one of the most useful lest units in the TVElectronic field, and almosi a "must" for sevicing TV sets. No need to buy a cosily "scope" when you graduate. This quality. commercial-type unit w ll serve you for yeers lo come.

DeFOREST'S TRAINING, INC. 2533 N. ASHIAND AVENUE, CHICAGO 14, ILLINOIS

LEFT: At Home You Build and Keep A JewelBearing Multi-Meter ... an expremely handy metef. Together with the Oscilloscope, It can also help you "earn while you learn"-servicing in your
 14 70 GARN MONEY IN IELEvision namo ciectinonics

RE-10-J

I would like your Opporkuily Bullein showing
Maney the trainingevision-Rodio-Electroniss"; olso, complete focts obout raining opportunities mode possible by your organization.

This great, billion dolfar opportunity field now offers you a chance of a lifetime to get started toward a real job or your own profitable business. With the TV station limit now raised from over 100 to 2053, Television in the next several years will be headed for almost every community. Mail coupon loday. See how you may prepare to cash in on one of the most active fields of our lime.

get started this Wonderfully Practical Way

You don't have to know the first thing about Television-RadioElectronics at present. D.T.I. supplies you al home with (a) the knowledge, (b) practical experience and (c) employment service-EVERYTHING YOU NEED to help you get started in Television-Radio-Electronics.
FIRST: You receive well-illustrated lessons.
SECOND: You use visual training movies-a great aid to helping you understand important basic points FASTER . . EASIER. . BETTER. D.T.I., alone, brings you this wonderful visual training method at home-the same type the armed forces, colleges and industrial organizations are using with such remarkable results.
THIRD: You get many shipments of parts for setting up your own Home Laboratory - working over 300 construction and test procedures for the practical experience you need. This includes building and keeping a 5 -inch commercial-type Oscilloscope, a jewel-bearing Multi-Meter, and a big 21 -INCH TV Sel. D.T.I. also offers another home training, but without the TV Set.
FOURTH: Upon completing your training, you can then get the fine help of D.J.I.'s effective Employment Service-which has nationwide contacts with many employers of trained Television-Radio-Electronic men.

If preferred, you can get all your training in D.T.I.'s thoroughly equipped electronic training laboratories in Chicago. Get the complete story. We believe what we have for you will really surprise you. MAIL THE COUPON TODAY.
"ONE OF AMERICA'S FOREMOST TELEVISION training centers"

MILITARY SERVICE
If subject to military service, the training information we have for you should prove very helpful.

DEFOREST'S TRAINING, ING。 AFFILIATED WITH

If knowledge came in containers, almost anyone could pioneer in the design and development of Electron Tubes - might even match RAYTHEON'S remarkable record of achievement in the industry.

But the kind of "know-how" that has helped RAYTHEON achieve so many industry-wide firsts, and established Raytheon Tubes as the quality standards of the industry, comes only through years of dedication to a single objective. For thirtyyears that objective has been to make the finest Electron Tubes in the world. And the precious "know-how" accumulated during this period is now being used to maintain RAYTHEON TUBES' leadership in the years to come.

That's why you can use Raytheon Radio and Television Tubes - today and
 tomorrow - with complete confidence that you are using the finest. Ask your Raytheon Tube Distributor for them.

RIGHT...FOR SOUND AND SIGHT

RAYTHEON MANUFAGTURING COMPANY
Recoiving Tute Division
Newton, Mass, Chicago, III., Alicmita, Ga, Los Jnigeles, Caili.

ADD TEGNNICAL TRANIMG to your practical experience

Get Your FGG License In A Hurry!

Then Use Our Amazingly Effective JOB FINDING SERVICE

TELLS HOW-

HERE IS YOUR
GUARANTEE
If you fail to pass your
Commercial License exam
after completing our
course, we guarantee to
continue your training
without additional cost of
any kind, until you suc
cessfully obtain your
Commercial ticense, pro
vided you first sit for this
examination within 90
days after completing our
course.

TELLS HOW- Employers make

 JOB OFFERS Like These to Our Graduates Every MonthLetter from nationally-known Airlines, "We would olso appreciate if you would place the following additional advertisement in your bulletin-Wanted -Superintendent of Communications.. Salary $\$ 666.66$ per month Letter from nationally known manufacturer of high quality AM and FM transmitters "We are very much in need at the present time of radio-electronics technicians and would appreciate any helpful suggestions that you may be able to offer. Salary up to $\$ 412$ per month to start."
These are iust a few examples of the job offers that come to our office periodically. Some licensed radioman filled each of these jobs ... it might have been you!

HERE'S PROOF FCC LICENSES ARE OFTEN SECURED IN A FEW HOURS OF STUDY WITH OUR COACHING AT HOME in Spare Time.

Name and Address

Lee Worthy
$220^{1}{ }^{2}$ W Witshire St.. Bakersfield. Calif.
Box 1016, Dania. Fla.
Francis X. Foerch.
S/Sgt. Bent PI.. Bergenfield. N. J.
S/Sgit. Ben H. Davis. 317 North Roosevelt. N. J.
317 North Roosevelt. Lebanon. III.
Albert Schoell.
IIO West IIth St.. Escondido. Calif
CLEVELAND INSTITUTE OF RADIO ELECTRONICS
CARL E. SMITH, E.E., Consulting Engineer. President

License 2nd Phone ist Phone
Ist Phone
Ist Phone
2nd Phone

TELLS HOW-

Our Amazingly Effective JOB-FINDING SERVICE Helps CIRE Students Get Better Jobs Here are a few recent examples of Job-Finding results: GETS AIRLINES JOB
Whe to sour Inlr-Finding service. I have heen getting many offers from ath orer

GETS FIVE JOB-OFFERS FROM BROADCAST STATIONS
"Your 'Chief Engineer's Bulletin' is a grand way of oltaining employment for your graduates who have ohatine, their list class license. since my mame has heen on the list Inave reccived calls or letters from five stations int the southern states. and ant解 gets Civil service job "I lave obtained a position at Wright-Paterson Air Force Base. Daston. Ohio. as Junior Eiectronic Equithunt Reluatrman. The Emblomment Application you prepared for me had
a lot to do with me landing this desirable position Chat E. Lnomis, 40 li Gemesee Ace., Dastom. Ohin.

Your FCC Ticket is recognized in all radio fields os proof of your technical ability.
 HOMESEWHICHE
COURSE WCC-TYPE
SUPPLIESFATIONS SUPPLIES FATIONS EXAM WNA LESSONS

8
 Pre-sold to Millions!

G-E DUAL COAXIAL SPEAKER Model A1-400
New approach to coaxial speaker de-sign-high sensitivity at low cost. Exceptional balance between speakers with G-E Acoustic Balancer. Newly developed Pressure Equalizer. . a wavefront shaping plug... provides smooth tweeter response.

G-E PREAMPLIFIER-CONTROL UNIT Model A1-200
Combines functions of equalized preamplifier plus adjustable record compensation, program input selection, tone controls and volume control. Matching unit for the "Custom Music" amplifier. Self-powered for use with any installation.

G-E POWER AMPLIFIER Model A1-300
A medium power, compact amplifier designed to provide needed speaker power. Essential element in the new General Electric "Custom Music" En. semble. Delivers high-fidelity performance at very low cost.

G-E DELUXE TONE ARMS A1-500 (12"

Al-501 (16")
For home or broadcast station use. Compatible with the exceptional qual. ity of G.E cartridges. Calibrated stylus pressure adjustment... 4 to 14 grams. They were developed to improve record reproduction in every installation.

FOR SUPERIOR PERFORMANCE...

LOW COST...MINIMUM SERVICE...

INSTALLATION ECONOMY!

- Through the pages of nine top consumer magazines... in display rooms... on FM broadcasts... and at shows millions are discovering -indicating a preference for-the unique features of a G-E Custom Music Ensemble. Here is the single package of matched bigh-fidelity equipment you need to expand your audio business, assure satisfied customers. Get in tune today with the growing popularity of custom audio installations...add to your net profit ... with complete General Electric equipment!
Individual components or the complete ensemble now available! Call a local G-E distributor or write for information.

G-E SPEAKER ENCLOSURE

Model Al-406 $\mathbf{l} 6 \mathrm{cu}$. ft.) Attractive corner or wall cabinet in hand-rubbed blond or mahogany veneers. "Distributed port" design provides full low frequency response. Tonal range with G.E Coaxial Speaker-40 to 15,000 cycles.

SEND FOR COMPLETE INFORMATION

General Electric Company, Section 45103
Electronics Park, Syracuse, N. Y.
Please send me specifications and other data on the new G-E Custom Music Ensemble.
\qquad
\qquad
\qquad
\qquad

Get in on the TV humm...

starling today!

FAMOUS I.C.S. COURSES
-ONE FOR YOU!

- Prepare now for the new Radio-TV-Electronics boom. Gel in on VHF and UHF . . . aviation and mobile radio . . color TV . . . binaural sound! The International Correspondence Schools can help you!

If you've ever thought about Radio or Television as a career . . . if you have the interest, but not the training ... if you're waiting for a good time to start . . . NOW'S THE TIME!

No matter what your previous background, I.C.S. can help you. If Radio-TV servicing is your hobby, I.C.S. can make it your own profitable business. If you're interested in the new developments in Electronies, I.C.S. can give you the basic courses of training you need. If you have the job but want faster progress, I. C. S. can qualify you for promotions and pay raises.
I.C.S. training is success-proved training. Hundreds of I.C.S graduales hold top jobs with top firms like R.C.A.,G.E., DUMONT, 1.T.\&T. Hundreds of others lave high ratings in military and civil service. Still others have successful businesses of their own.

With I.C.S., you get the rock-bottom basics and theory as well as the all-important bench practice and experimentation. You learn in your spare time-no interference will business or social life. You set your own pace-progress as rapidly as you wish.
Free career guidance: Send today for the two free success books, the 36-page "How to Succeed" and the informative catalog on the course yon check helow. No obligation. Just mark and mail the coupon. With so much at stake, you owe it to yourself to act-and act fast!

- TELEVISION TECHNICIAN-TO qualify you for high-level technical posívions in television. Camera, studio, transmitter technfiques. Manufacture, sale nd instalation of TV equipment
\square TELEVISION RECEIVER SERVIC. ING-Installation, servicing. conversion. Dealership. For the man who knows about radio and wants TV training.
\square RADIO \& TELEVISION SERVICING - Designed to starl you repairing. in. vision receivers soon after sartine the. course.
\square RADIO \& TELEVISION SERVICING WITH TRAJNING EQUIPMENT Same as above but with addition of high-grade radio servicing equipment
and tools.

RADIO OPERATJNG CDURSE Special course to help you pass the Government examination for operator's licenses. Code. IV. FM. Radioregulations.
\square INDUSTRIAL ELECTRONICS Broad, solid background course devoted to the electron tube and to its many applications.

ITTERNATIOMAL CORRESPONDEKGE SGHOOLS

ART	\square Heating	
\square Commercial Ar!	- Steam Fitting	ENGINEERING
$\square \begin{aligned} & \text { Magazine and Book } \\ & \text { Illustrating }\end{aligned}$	\square Air Conditioning	\square Civil Engineering
Illustrating	\square Electrician	Structural Engineering
Cartooning	BUSINESS	\square Surveying and Mapping
\square Fashion Illustrationg	Business Administration \square Certified Public Accountant	\square Structural Drafting
AUTOMOTIVE	\square Accounting	\square Reading Elueprints
\square Automotile, Mechanic	Bookkeeping	\square Concrete Construction
\square Auto-Elec. Technician	\square Stenography and Typing	\square Sanitary Engineering
Auto Body Rebuilding	\square Secretarial	DRAFTING
	- Federal lax	\square Aircraft Drafting
	\square Business Correspondence	\square Architectural Drafting
Aeronautical Engineering If	\square Personnel and Labor Relations	\square Electrical Drafting
Aircraft Engine Mechanic	\square Retail Business Management	\square Mechanical Drafting
\square Airplane Drafting	\square Managing Small Business	Sheet Metal Drafting
BUILDING	0 Sales Management	\square Mine Surveying and Draftio
	\square Salesmanship	ELECTRICAL
Buiding Cong	rafic Management	Electrical Engineering
Estimaling		
Carpenter and Mill Work	mistry Engineering	trical Maintenance
Carpenter Foreman	Analytical Chemistry	trical Drafting
\square Reading Blueprints	- Petroleum- Nat'l Gas	Line
\square House Planning	\square Pulp and Paper Making	HIGH SCHOOL
\square Plumbing	\square Plastics	High School Subjects

\qquad
City
Occupation Zone \qquad
\square硅 $\square-\square$
 MILLIONTH STUDENT

More Stable Operation at

1/3 the Cost

of Comparable Generators

Again... Philco leads the field! For the finest possible linearity adjustments without station pattern, here is the all new cross dot linearity pattern generator. This unit not only lets you make TV linearity adjustments more quickly and accurately but also permits precise routine adjustments and trouble shooting with amazing economy of operation ... Light, rugged, portable, heavy gauge steel case ... finished in durable gray hammertone... See your Philco distributor now or write Philco, Accessory Division, "A" \& Allegheny, Philadelphia, Pa.

Now Yours on New

Special Payment Plan

Model G-8004
Specifications: - Self stabilized oscillator - Variable output frequencies Power consumption approximately 10 watts - Power supply-105-125 Volts, 60 cycles - large easy-to-tune dial high level output controllable with variable attenuator.

PHILCO
Test Equipment
Specifically Designed for the Serviceman

Model M-8104-TV Field Strength Meter ${ }^{\text {- }}$ Offers more features than any unit at this popular price... Super Colorado Tuner for low noise and high gain . . . May be used to check TV boosters, antenna combinations, interfering signals and picture signal strength.

Model 7008-Visual alignment Generator - Combines in one economical unit functions ordinarily found only in a cumbersome collection of costly devices... Includes extra sensitive built-in oscilloscope . AM, FM, and audio generators. Sweep output flat to within . $2 \mathrm{DB} / \mathrm{MC}$.

MY SCHOOLS FULLY APPROVED TO TRAIN VETERANS UNDER NEW G.I. BILL! If discharged after June 27, 1950 - CHECK COUPON! Also approved for RESIDENT TRAINNG in New York City... qualifies you for full subsistence allowance up to $\$ 160$ per month.

ADVANCED FM-TV TECHNICIAN TRAINING!

My FM-TV Technician Course can save you montins of trainirg if you have previous Armed Forces or civilian radio experience! Train at home with kits of parts, plus equipment to build BIG SCREEN TV RECEIVER, and FREE FCC Coaching Course! ALL FURNISHED AT NO EXTRA COST!

NEW! PRACIICAL TV CAMERAMAN \& STUDIO COURSE!

men with previous radio 8 TV training I train you at home for an exciting high pay job as the man betind the TV camera. Work for TV stars _n TV studios or "on location" at remote pick-ups! Course includes one week of actual work with TV CAMERAS and STUOIO EQUIPMENT at our associate resident school in New York City AT NO EXTRA COST!

FREE FCC COACHING COURSE!

Qualifies you for Higher Pay! Given to all my students AT NO EXTRA COST after TV Theory and Practice is completed. Helps you qualify for the TOP JOBS in Radio-TV that demand an FCC License! Full training and preparation at home for your FCC License.

At No Extra Cost! You Get A
 ROUND TRIP TO NEW YORK CITY Only RTTA Makes This Amazing Offer!

Yes...FROM ANYWHERE IN THE U.S. OR CANADA1 pay your way to New York and return, PLUS 2 FREE WEEKS of advanced instruction and shop triaining at the PIERCE SCHOOL OF RADIO \& TELEVISION! Available at NO EXTRA COST to all students enrolled for complete Radio-TV Technician Course after home study training is completed.

[^0]

Design gives you

FIVE FIRSTS-Five exclusive sales features

Now! - a new name, and a great new standard of quality and performance in antenna rotators! With FIVE major advances, SUPEROTOR overnight has shot years ahead of the entire field! For the consumer, SUPEROTOR means superb new control and recep-
tion. For the serviceman - a remarkable new ease in servicing. And for the distributor - the "plus" business that comes from handling a unit that wins cheers all the way down the line. SUPEROTOR will be available in your area soon. Don't miss it!

5 DYNAMIC NEW ENGINEERING FEATURES ••

Plus these Other Outstanding Features

- Antenna position readable without rotating antenna
- Operates at upwards of $\mathbf{3 5 0}$ feet from control point
- Dependable high-torque motor
- Wide-span double ball bearing supports

"speaks" for itself in any company

ing to desired circuit thru a single $21 / 2^{\prime \prime}$ knob flush with the face panel. The molded switch itself embodies the most advanced engineering practices. Fully enclosed, the silvered contacts are kept permanently clean. Its rugged construction means stronger performance and longer life.
These two factors are but samples of the many ways in which on-the-job needs have been anticipated and provided for in a beautiful streamlined tester. It provides A.D-D.C. Volts, D.C. Micro-amperes, Milliamperes, Amperes, Ohms, Megohms, Decibel and Out Put readings in a no-short design embodying interior construction with all direct connections; no harness cabling. Its fool-proof unit switch construction houses precision resistors in insulated recesses in direct connection with switch contacts.
Study the following Ranges and descriptions and compare them point by point with any similar instrument for conclusive proof that Triplett 630 "speaks" for itself in any company.

Ranges

D.C. Volts: $0-3 \cdot 12-60-300 \cdot 1200$-at 20,000 Ohms/Volt (For Greater Accuracy on TV and other High Resistance Circuits
A.C. Volts: 0-3-12-60-300-1200-6000-at 5,000

Ohms/Volt
(For Greater Accuracy in Audio and other High Impedance A.C. Circuits.)
Decibels: $-30+4,+16_{1}+30_{1}+44_{i}+56,+70$
(For Direct Reading of Output Levels.)
D.C. Microamperes: 0.60-at 250 Millivolts. D.C. Milliamperes: 0.1.2-12-120-at 250 Millivolts D.C. Amperes: 0.12 -at 250 Millivolts.
*Megohms: $0.1 .100-14,400-440,000$ center scale)
Output: Condenser in series with A.C. Volt ranges.
*Resistance ranges are compensated for greatest accuracy over wide battery voltage variations. Series Ohmmeter circuits for all ranges to eliminate possibility of battery drain when leaving switch in Ohms position.

TRIPLETT 630 Volt - Ohm - Mil - Ammeter has many significant advantages and features that make it stand distinctly apart from similar instruments in its price class. Actually in components, in engineering, in mirutely accurate performance, Triplett 630 closely approaches laboratory standards.

Since the scales of any VOM comprise the means by which it makes its multiple services most valuable, the legibility and easy-read-ability are of prime importance. Triplett engineers have created in Triplett 630 the longest scales available in this size tester. (The upper arc by actual measurement is four and three-eighth inches.)

This long-scale factor accounts for the ease with which precise readings are easily made. Further legibility is gained by use of black and red scale markings. D.C. and D.B. are black and white. A.C. and Ohm markings are red on white. Ohms from one hundred million to one-tenth ohm mark the range of this amazing scale. On low ohms, center scale reading is $4 . \overline{0} \mathrm{ohms}$.

The Single Switch

Futher indication of the practical skill and engineering "know-how" behind Triplett 630 is the Single Switch. Its simplicity of operation assures no burn-outs thru momentary memory lapses. There is instant switch-

Get a Triplett 630 into your own hands at your distributor. U.S.A. Dealer Net $\$ 3950$
triplett electrical instrument company BLUFFTON, OHIO

ANOTHER CBS-HYTRON CTS-RATED* FIRST

*CTS-RATED: Rated for Continuous Television Service. In TV receivers, five tubes work ... like transmitting tubes . . . hard! You know them: rectifiers, deflection amplifiers, damper diode. Larger-screen sets aggravate the problem. CBS-Hytron recognizes your need for huskier tubes for these sockets. Brand-new designs, not just improved tubes. CTS-Rated 5AW4 already answers your 5U4G low-voltage rectifier problem. Here is your new replacement for the 6BQ6GT: The new CTS-Rated 6CU6. Yes, more CBSHytron CTS-Rated tubes are coming. Watch for them.

RUN-AWAY PLATE CURRENT
FORGET:
HIGH-VOLTAGE ARC-OVERS
SHRINKING TV PICTURES
Replace 6BQ6GT with New Work-Horse

Cut your call-backs by up to 40 per cent with CBS-Hytron 6CU6. It's directly interchangeable with the 6 BQ 6 GT . It's rated the same as the 6BQ6GT. But the new CTS-Rated 6CU6 will live under 6 BQ 6 GT maximum ratings. How? The 6CU6 has generous margins of safety for: plate dissipation . . . plate current . . . highvoltage insulation... and high-line protection. The older 6BQ6GT is a good tube. But remember it was originally designed for 10 - and 12 -inch TV sets. Today it carries the load in 21 -inch sets. Furthermore, it must combat the accumulated dissipation caused by: line-voltage variations . . . faulty receiver adjustment . . . and shifting values of components due to age and overload. Result: the 6BQ6GT may actually be operated well above its maximum ratings in many TV receivers.
In the new CBS-Hytron 6CU6, you have a tube that takes this rough treatment. And continues to ask for more. High voltage and heat meet their match. The weakest link in the TV tube line-up becomes the strongest. And your callbacks plunge downward. Bet you can't wait to try the CTS-Rated 6CU6. We couldn't. It's a honey! Watch for it soon at your CBS-Hytron distributor's.

TELEPHONY

For years the accepted way to connect wires to telephone apparatus was with solder. Now, Bell Laboratories engineers have discovered how to make connections faster and better-without solder.

Solder, they reasoned, wouldn't be needed if wire and terminal could be kept tightly pressed together. But, for economy, this had to be done with the wire alone-without complicating screws and springs.

They found the answer in using a properly dimensioned terminal with sharp edges ... whipping the wire around it under high tension. The terminal bites into the wire, locking it securely into position. Thereafter the squeezed edges maintain a contact pressure of at least 15,000 pounds per square inch-even under vibration that cracks soldered joints.

The new connections can be made in half the time-a big moneysaver in the billion connections that Western Electric makes each year for the Bell System. It's another example of the way Bell Telephone Laboratories works continually to keep costs low.

BELL TELEPHONE LABORATORIES

IMPROVING TELEPHONE SERVICE FOR AMERICA PROVIDES careers for creative men in mechanical engineering

Cross section of solderless connection. Note terminal biting into wire. In a six-turn connection there are at least 20 clean contact areas impervious to moisture and corrosive gases, offering current a low resistance path.

Power tool whips wire on terminal in fraction of a second. There is no heat which could damage miniature components . . . no dropped solder or wire clippings to cause trouble later.

things are NOT as they seem...

This is a perfect square within the circle - it is an optical illusion that the sides bend.

Things are not as they seem . . . These two fuses look alike . . . But they are not.

This fuse may burn out anywhere along the length of the filament even in the cap-this blown fuse is impossible to detect visually.

This Littelfuse has a controlled blowing pointthe filament is plated throughout its length except in the very center-the fuse will always blow here. A blown Littelfuse can be detected immediately-a Littelfuse feature.

Littelfuse bolds more design patents on fuses than all other manufacturers combined.

FAMOUS SHOP-TESTED REFERENCE BOOKS

TV Servicing Cyclopedia. Covers every phase of TV, including color and UHF. Explains theory, servicing, testing, antennas, circuits, convertors. etc. 750 p. Order CTB-1 \$5.95 Practical TV Servicing. How to service by alignment, by picture pattern; how to install antennas; how to handle any TV service problem. Data on color and UHF. 400 pages. Order СтB-4
Latest Testing Instruments. Covers proper use of all modern $T V$. radio and electrical testing equipment. Tells short-cuts, analyzes all instruments. 350 p. Order CTB-3 $\$ 3.25$ Television and Radio Handbook. 3000 useful facts on practical radio servicing. Covers most frequently recurring problems; troubleshooting hints. Data on UHF conversion, etc. 375 pages.. Order CTB-5
$\$ 2.75$ Industrial Electronics. Practical, simplified information on basic principles and practices of electronics. The ideal book for orientation in electronics. The ideal book or orientation in
the entire field. 468 p . Order CTB-2 ... $\$ 3.75$ Applied Practical Radio-Television. Complete 5-Volume Library; 1780 pages of latest "knowhow" on Radio and TV. Vol. 1, Radio \& TV Principles; Vol. 2, Radio, TV'and FM Receivers; Vol. 3, Radio \& TV Circuits; Vol. 4, Radio \& 'TV Testing Methods; Vol. 5, TV Servicing. 5 Volume Set. Order CTB-50. \$15.00 Applied Practical Electricity. 8 Volume Library covering everything on the subject, including home wiring, motors, refrigeration, air conditioning, automotive diesel, etc. 3634 pages in 8 vols. Order set CTB- 180 $\$ 24.00$ Electrical Trouble-Shooting. Complete troubleshooting course; also covers refrig., industrial electronics. 626 pages. Order CTB-101 . . . $\$ 6.95$ Electricians Handbook. Code requirements, rules, tables, charts, testing guides; data on motors, currents, etc. 348 pages. Order CTB-102 . $\$ 2.75$

BOYCE AUTHORTITITIE TV

Video Handbook. Full data on TV design, construction, production, installation, operation and servicing. 14 complete sections cover the entire plete sections cover the ene chire 892 pages. Order BB-2 $\ldots \$ 5.95$ Radio Handbook. 18 sections;
 clearly explains radio and electronic theory; covers all phases thoroughly, including parts and circuit analyses, sound, Recording. Testing, Antennas, TV, etc. 890 pages. Order BB.1. $\$ 4.95$

HOWARD W. SAMS \& CO., IMC.

PHILIP S. RAND, project engineer at the Remington-Rand Laboratory of Advanced Research at South Norwalk, Connecticut, was recipient of the American Radio Relay League's Merit Award at its presentation on July 12 at the Seventh ARRL National Convention in Houston, Texas. Goodwin L. Dosland, president of the ARRL, the national association of amateur radiomen, presented a plaque to Rand in recognition of his advancement of the welfare of amateur radio through leadership and technical accomplishment in reduction of television interference.

I'hilip S. Rand receiving special citation.
Rand has done extensive research in the field of television interference elimination for several years from his home in Redding Ridge, Connecticut. He is the compiler and main author of the book, Tclevision Interference. Since October, 1952, he has been associated with the ARRL as Technical Consultant. In that capacity he has given demonstrations in a number of cities to familiarize service technicians and amateur radio operators with the causes of television interference and remedies.

THE COMPATIBLE COLOR TV set is no longer just around the corner. The FCC in its tentative adoption of color TV standards as proposed by the National Television System Committee has opened the way for compatible color TV sets to appear in retail stores by next spring, according to statements made by RCA in its petition to the FCC supporting NTSC standards. Objections may come from the three-dimension color TV advocates, such as Dr. Allen Du_{u} Mont and U. A. Sanabria, president of American Television, Inc., Chicago, who said he would oppose the NTSC standards. Already on record in support of the new standards are NTSC itself, an industry-wide committee of engineers and scientists created in 1950 ; RCA and NBC in a joint petition; Philco; Sylvania Electric Products, Inc.; General Electric; and Motorola. Hazeltine, a research laboratory which has had an important part in color TV, told the FCC it would also support the new standards.

COLOR TELEVISION SETS should be exempted from excise taxes, the RETMA has advised Congress. RETMA
said that it is willing to accept a general manufacturer's excise tax which would cover black-and-white TV ;ets, and called for repeal of the Federal 10% manufacturer's excise tax on TV sets. Congress was told that color TV sets should get special consideration, in conformance with the tradition of withholding of taxes temporarily from new products and industries. RETMA contended that the imposition of the excise tax on electronic equipment used for commercial and technical purposes was costly and confusing. It was stressed that this tax was contrary to Congressional intent, and legislation should be initiated to remove the tax on parts and components of radio and TV sets other than tubes.

FOURTEEN NEW TV STATIONS on between our last report in this column and August 14. Six of these are v.h.f. stations: KBES-TV (5), Medford, Oregon; KMMT (6), Austin, Minnesota; KMBC-TV and WHB-TV who are to share time of the same channel (9), Kansas City, Missouri; KROC (10), Rochester, Minnesota; and KMOTV (13), Tacoma, Washington.

The new u.h.f. stations are: WTVP (17), Decatur, Illinois; KFSA-TV (22), Fort Smith, Arkansas; WGVL (23), Greenville, South Carolina; KUSC-TV (28), Los Angeles, Califormia; WETV (47), Macon, Georgia; WKJF-TV (53), Pittsburgh, Pennsylvania; WGLV (57), Easton, Pennsylvania and WTVU (73), Scranton, Pennsylvania.
In addition, WSYR-TV, Syracuse, moved from channel 5 to channel 3 ; and WROV-TV (27), Roanoke, Virginia, went off the air.

An error in listing a construction permit was made in our August issue. The call given as WMO (Tacoma, Wash.) should be KMO.
WJAR-TV (10), Providence, R. I. was incorrectly listed in our July issue as channel 11.

SUBSCRIPTION TV is the answer to the u.h.f. station's problem of economic survival, according to four u.h.f. grantees who asked the FCC to lay down rules, regulations, and standards for a paid TV service.

The four construction permit holders -Home News Publishing Co. (WDHN, channel 47) New Brunswick, N. J.; Pennsylvania Broadcasting Co. (WIPTV, channel 29) Philadelphia; Stam-ford-Norwalk TV Corp. (channel 27, no call yet assigned) Stamford, Conn.; and Connecticut Radio Foundation (WELI-TV, channel 59) New Haven, Conn.-believe that the box-office type of TV will make it possible for them to improve programs and thus compete with older v.h.f. stations who have network affiliations.

A survey of their areas, the petitioners state, shows that prospective set owners would be more ready to buy u.h.f. receivers if they could be assured of receiving (for special fees) first-run movies, nonbroadcast sports events, and other features not normally seen by viewers of free TV.

Television is Growing Fast Making New Jobs, Prosperity

More than 25 million homes now have Television sets and thousands more are being sold every week. Well trained men are needed to make, install, service TV sets. About 200 television stations on the air with hundreds more being built. Think of the good job opportunities here for qualified technicians, operators, etc. If you're looking for opportunity get started now learning RadioTelevision at home in spare time. Cut out and mail postage free card. J. E. Smith, President, National Radio Institute, Washington, D. C. OUR 40TH YEAR.

AVAILABLE TO VETERANS UNDER G.I. BILL

CUT OUT AND MAIL THIS CARD NOW Sample Lesson \& 64-Page Book 0 D)
This card entitles you to Actual Lesson on Servicing, shows how you learn Radio-Television at home. You'll also receive my 64-Page Book, "How to Be a Success in Radio-Television." Mail card now!
NO STAMP NEEDED! WE PAY POSTAGE
Mr. J. E. SMITH, President,
National Radio Institute, Washington 9, D. C.
Mail me Lesson and Book. "How to Be a Success in RadioTelevision." (No Salesman will call. Please write plainly.)

NAME. AGE ADDRESS CITY.
. STATE
VETS write in date of discharge

B CDEFGH
The ABC's of SERVICING

 Training PLUS opportunity is the PER- Aviation and Police Radio Micro-Wave

 FECT COMBINATTION for job security, Relay, Two-way Radio communication for good pay, advancement. When times are buses, taxis, trucks, etc. is expanding. New good, the trained man makes the BETTER uses for Radio-Television principles coming scarce, the trained man enjoys GREATB are scarce, the trained man enjoys GREATER SECURITY. NRI training can help assure you and your family more of the betterRadio-Television is today's opportunity field. Even without Television, Radio is bigger than ever before. Over 3,000 Radio Broadcasting Stations on the air; more than
115 million home and Automobile Radios 115 million home and Automobile Radios
are in use. Then add Television. Television Broadcast Stations extend from coast to coast now with over 25 million Television sets already in use. There are channels for 1,800 more Television Stations. Use of
NRI Training Leads to Jobs Like These

BROADCASTING	GOVERNMENT RADIO
Chief Technician	Operator in Army
Chief Operator	Navy, Marine Corps,
Power Monitor	Coast Guard
Recerding Operator	Forestry Service
Remote Control	Dispatcher
Operator	Airways Radio
SERVICING	
Home and Auto	AVIATION RADIO
	Plane Rodio O
A. Systoms	Transmitter Technic
Television Recoivers	Receiver Technician
Electronic Conirols FM Radios	Airpert Transmitter
IN RADIO PLANTS	
Design Assistant	TELEVISION
Trensmitter Design Technician	Pick-up Operator Voice Transmitter
Service Manager	Operator
Tester Manag	Television Technici
Servicomon	Remote Contral
Research Assistant	Operator
SHIP AND HARBOR	Service and
RADIO	Technicion
Chief Operator	
Assistant Operater	POLICE RADIO
Radietelephone Operator	Tronsmitter Operater

My Training is Up-to-Date

You Learn by Practicing

Get the benefit of my 40 years experience training men. My well-illustrated lessons give you the basic principles you must have to assure continued success. Skillfully developed kits of parts I furnish "bring to life" the principles you learn from my lessons. Read more about equipment you get on other side of this page.
Naturally, my training includes Television. I have, over the years, added more and more Television information to my courses. The equipment I furnish students gives experience on circuits common to BOTH Radio and Television.

Find Out About the Tested Way to Better Pay
 Read at the right how just a few of my

 students made out who acted to get the better things of life. Read how NRI students earn $\$ 10$, $\$ 15$ a week extra fixing Radios in spare time starting soon after enrolling. Read how my graduates start their own businesses. Then take the next step-mail card below.You take absolutely no risk. I even pay postage. I want to put an Actual Lesson in your hands to prove NRI home training is practical, thorough. I want you to see my 64-page book, "How to Be a Success in Radio-Television" because it tells you about my 40 years of training men and important facts about present and future Radio-Television job opportunities. You can take NRI training for as little as $\$ 5$ a month. Many graduates make more than the total cost of my training in two weeks. Mailing postage free card can be an important step in making your future successful. J. E. Smith, President, National Radio Institute, Washington 9, D. C. OUR 40TH YEAR.

NEW HOME OF ALLIED RADIO ultra-modern facilities TO SERVE YOU BEST

FREE!
get your value-packed 1954 ALLIED 268-PAGE CATALOG

The World's Largest Stocks

- TV and Radio Parts
- Test Instruments
- High-Fidelity Equipment
- Cusłom TV Chassis
- AM, FM Tuners and Radios
- Recorders and Supplies
- P. A. Systems, Accessoriés
- Amateur Station Gear
- Builders' Kits, Supplies
- Equipment for Industry

Fastest Service in Electronic Supply

SEND FOR THE LEADING ELECTRONIC BUYING GUIDE

Send for it today!

the only COMPLETE catalog for everything in TV, Radio and Industrial Electronics

You'll want the one complete Buying Guide to Everything in Electronics-268 pages packed with the world's largest selection of quality equipment at lowest, mcney-saving prices. See all the latest releases in custom TV chassis, TV antennas and accesscries; AM and FM tuners and radios; everything in High-Fidelity custom components; latest P.A. Systems and accessories; recorders and supplies; Amateur receivers, transmitters and station gear; specialized industrial electronic equipment; $t=s t$ instruments; builders' kits; huge list ings of parts, tubes, tools, books -your choice of the world's most complete stocks of quality equipmert. allied gives you every buying adv antage: speedy shipment, expert personal help, lowest prices, liberal terms, assured satisfaction. Get the 1954 alinied Catalog. Keep it handy-and save time and money. Send for your free copy today.

SAVE ON EVERYTHING IN ELECTRONICS

ALLIED RADIO

World's Largest Electronic Supply House

EASY-PAY TERMS

Use ALLIED'S liberol Easy Poyment Plon-only 10\% down, 12 months to pay-no corrying charge if you pay in 60 doys. Availoble on $\mathrm{Hi}-\mathrm{Fi}$ and P. A. Units, recorders, TV chossis, test instruments, Amgteur gear, etc.

TV and HI-FI SPECIALISTS
To keep up with developments in High-Fidelity and TV, look to ALLIED. Count on us for all the latest releases ond lorgest stocks of equipment in these importont fields. If it's onything in High-Fidelity or Tele-vision-we hove it in stock!

ALLIED RADIO CORP., Depf. 2-K-3
100 N. Western Ave., Chicago 80, Illinols
\square Send FREE 268.Page 1954 ALLIED Catalog.
\qquad
Name
Address

City
fy \qquad Zone \qquad _State

TUNG-SOL makes All-Glass Sealed Beam Lamps, Miniature Lamps, Signal Flashers, Picture Tubes, Radio, TV, Special Purpose Electron Tubes, Semiconductor Products.

TUNG-SOL ELECTRIC INC. Newark 4, New Jersey

Sales Offices: Allonta, Chicago, Columbus, Culver Cify Ilos Angeles), Dallas, Denver, Detroi, Newark, Seattle

RCA experimental high-speed memory device. Head of match shows relative size.

A NEW MEMORY DEVICE which combines the features of high speed with a potentially huge information storage capacity, was described by Dr. Rajchman of RCA at a symposium on digital computers sponsored by the Argonne National Laboratory. The device consists basically of 10,000 tiny ringshaned magnets woven on thin wires. The high-speed electronic memory device promises to help solve scientific and economic problems too vast and too complex for the present capabilities of electronic computers. Dr. Rajchman said the new device offers significant advantages for computers of the future because it can memorize a bit of information in a few millionths of a second; it can store 10,000 "bits" of information at any one instant; it potentially has a very high degree of reliability; and it promises to be relatively cheap, as memories for computers go.

BROADCASTING. A bill has been introduced in Congress which would amend the Federal Communications Act by changing a definition in Section 3. The amendment would define broadcasting as a no-charge activity, as it concerns the listener, and would describe subscription television, commun-ity-antenna systems, and theater television as common-carrier services.

NATIONAL CONFERENCE on Tube Techniques, sponsored by the Subpanel on Tube Techniques of the Department of Defense will be held on October 13, 14 , and 15 at the auditorium of the Western Union Telegraph Co., 60 Hudson St., New York 13, N. Y.

The program will cover all phases of electron tube making techniques, processes, and materials. Pertinent papers are invited. Anyone interested may attend.

FIVE MILLION MORE RADIOS

 were in use in the United States on January 1, 1953, than on the same date in 1952. Figures released by the four major networks-ABC, CBS, MBS, and NBC-show that the increase brings the total number of sets in working order to well over 110 million. More radios were sold in this country in 1952 than automobiles, refrigerators, TV sets, or other home appliances.Home radios of course, form the largest group, with about 75 million receivers in nearly 45 million homes. More than 26 million private pessenger cars have radios, and about 9 million sets are installed in hotels, restaurants, offices, and other more or less public establishments.

ELECTRONICS has again made the power of its name felt. Radio-Electron-ics-Television Manufacturers Association is the new name of RTMA. Members of the association (which was simply RMA till several years ago) voted to make the change, and approved a reorganization plan which will expand the board of directors and provide larger representation for new segments of the industry, especially in the advanced electronics field.

AUDIO ENGINEERING Society's annual convention, held in New York City October 14, 15, 16 and 17 in conjunction with the Audio Fair, will have no less than 26 technical papers on technical audio subjects. The papers will deal with such subjects as loudspeakers, audio system design, disc reproduction, new developments, amplifier circuit design, home music systems, and multichannel sound reproduction. There will be seven morning and afternoon sessions, all of which will be held in the North Ballroom of the Hotel New Yorker.

START ON THE ROAD TO SUCCESS Study the RCA TV Servicing Course in your spare fime

A re you satisfied with the position you now hold? Do you feel $^{\text {m }}$ you're worth more money? Are you pleased with yourself, your work, your associates . . . and your future? What does the next year hold for you . . . and the year after that?

Are you content merely to plod along through the best years of your life . . . or do you want to get into more pleasant work hold a well-paid job . . . perhaps establish your own business?

If you are looking for a Real opportunity . . . If you want to Grow with a Growing Industry . . . If you want to grasp the success that should be yours, then we say to you, study TV Servicing.

Everyone knows that Television is the fastest growing industry today. Opportunities are going begging for men who have the training and ability to grasp them. Now is the time to start on the road to success in TV Servicing.

Study at Home in your spare time

The RCA Institutes Home Study Course in TV Servicing is easy to learn. You progress rapidly, step by step, as you learn the procedure of servicing and trouble-shooting TV receivers and installing TV antennas. Hundrees of pictures and diagrams help you understand the how-it-works information and the how-to-do-it techniques.

A Service of Radio Corporation of America

The RCA Institutes TV Servicing course was written and planned by instructors with years of specialized experience in training men. You get up-to-the-minute information, too, because you study right at the source of the latest developments in Television. Your lessons are carefully examined and accurately graded by competent teachers who are interested in helping YOU to succeed.

RCA Institutes is licensed by the University of the State of New York . . . an affiliate member of the American Society for Engineering Education . . . approved by leading Radio-Television Service Organizations.

It costs so little to gain so much

RCA Institutes makes it easy for you to take advantage of the big opportunities in TV Servicing. The cost of the TV Servicing Home Study Course has been cut to a minimum. You pay for the course on a pay-as-you-learn unit lesson basis. No other home study course in TV Servicing otfers so much for so little cost to you.

RCA Institutes conducts a resident school in New York City offering day and evening courses in Radio and TV Servicing, Radio Code and Radio Operating, Radio Broadcasting, Advanced Technology. Write for free catalog on resident courses.

SEND FOR FREE BOOKLET-Mail the coupontoday. Get complete information on the RCA INSTITUTES Home Study Course in Television Servicing. Boaklet gives you a general outline of the course by units. See how this practical home study course trains you quickly, easily. Mail coupon in envelope or paste on postal card.

MAIL COUPON NOW!

RCA INSTITUTES, INC., Home Study Dept. RE1053
350 West Fourth Street, New York 14, N. Y
Without obligation on my part, please send me copy of booklet "RCA Institutes Home Study Course in Television Servicing." (No salesman will call.)

Name \qquad
Address
\qquad

WHY SYLVANIA PRODUCTS MEAN BETTER BUSINESS:

YSy're really on board the betfer-profit special when you feature
Your customers know Sylvania as a pioneer in the development of fine radio and television products. From the very beginning, the name Sylvania has stood for the highest possible quality. And, as the industry has progressed and expanded, Sylvania has taken great care to maintain its recognized leadership.

Now, due to advanced manufacturing techniques and precision testing methods, Sylvania tubes can point to outstanding records, both in long life and fine performance. Today 7 of the 10 leading set manufacturers use Sylvania Picture Tubes and Receiving Tubes.

So, if you want recognized quality working on your side . . . sell Sylvania! Call your local Sylvania Distributor for the latest fall prices and money-making promotion offers, or write to: Sylvania Electric Products Inc., Dept. 3R-1710. 1740 Broadway, New York 19, N. Y.

> Television keeps telling about Sylvania quality

Sylvania's popular nation-wide television show "Beat the Clock" continues to tell millions of your customers week after week, all through the year, about the unbeatable quality of Sylvania products.

This book will save you 30 Mindes

FIND TUBE RATINGS, CONNECTIONS IN SECONDS

This big new Westinghouse Ready-Guide is a completely new kind of handbook of receiving tube data. Designed to save time for busy servicenten and engineers. Eliminates "squinting" at tiny data listings.

BIG - BOLD - CLEAR

Just 9 tube types are listed on each $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ page. Not 30 or 40 tiny type listings as in most condensed data books. Best of all, large clear base diagrans are located on the same page as ratings. Bothersome cross referencing, footnotes cut to the bone.

COMPLETE, ACCURATE, UP-TO-DATE

This new Westinghouse Ready-Guide lists complete data on receiving tubes which account for more than 98% of tube usage. 48 pages. 385 pictures and diagrams. 342 types listed.

SPECIAL: 3 for $\$ 1.00$

This Ready-Guide is being sold at less than cost as an introductory offer only. Price is only $35 \$-3$ for $\$ 1.00$. Order from your nearest RELIATRON Tube Distributor or mail coupon below.

BAROMETER of the PARTS INDUSTRY

During August, 87 of the leading manufacturers of Radio-Elec-tronic-Television parts and equipment made changes in their lines. There was a decrease in "change activity" as compared to July.
In price revisions by the number of manufacturers and products affected, the following summary illustrates the comparative trend for the months of July and August.

	No. of Manufacturers	
	July	August
Increased prices	25	32
Decreased prices	21	16

	No. of Products	
	July	August
Decreased prices	783	350
Dereased prices	783	65

For a summary of the most active product categories, see the following tables:

Product Group	Increased Prices		Decreased Prices		New Products		Discontinued Products	
	No, of Mfrs.	No. of Products	No. of Mfrs.	No. of Products	No. of Mfrs.	No. of Products	No. of Mfrs.	No. of Products
Antennas \& Access.	7	30*	6	24**	18	153	7	63**
Capacitors	0	0	0	0**	1	198**	0	0
Controls \& Resistors	1	7*	0	0	2	105**	1	10*
Sound \& Audio	13	141**	5	16**	21	114**	17	131*
Test Equipment	3	25*	0	0**	6	21*	3	$6^{* *}$
Transformer	2	134**	1	20**	2	14**	1	1**
Tubes	6	13**	4	5**	10	61*	5	75*
Wire \& Cable	0	0**	0	0**	3	$6^{* *}$	1	17
* Increase over July** Decrease from July					* Increase over July ** Decrease from July			
Comment : For the third consecutive month, over-all product activity continues 10 be heavy. However, the number of manufacturers making changes in their line has decreased slightly since the last reported period.								

This data is prepared by the staff of United Catalog Publishers, Inc, 110 Lafayette Street. New York, publishers of Radio's Master, the Official Buying Guide of the Parts Industry.

Merchandising and Promotion

Cornell-Dubilier Electric, South Plainfield, N. J., designed a special display unit for the CDR rotor. Done in full color, the display is adaptable for either window or counter use. Ray T. Leary, jobber sales manager, states that the CDR rotor fits right into the display and may be activated when the customer presses the lever on the control box. At the same time, Cornell-Dubilier and its affiliate, Radiart Corp., Cleveland, announced plans for a greatly accelerated promotion on the $C D R$ rotor at the consumer level beginning early this fall. TV spot announcements, newspaper ads, and promotional kits for distributors will be used.

Simpson Electric Co., Chicago, plans to spend $\$ 250,000$ in the next 12 months to promote its line of electrical testing equipment, according to Wallace Carroll, Simpson president.
Raytheon Manufacturing Co., Newton, Mass., had a full-page color ad on its Bonded Electronic Technician program in a recent issue of Life. It was headlined: "Nice Guy With an Undeserved Black Eye." The ad pointed out the capable and efficient service TV technicians have been rendering. Raytheon also recently announced a new tube promotion item for service technicians, the Tele Jar-Rotor, which consists of 48 transparent plastic jars for storing transistors, diodes and other small parts placed on a "ferris-wheel" holder.
Vaco Products Co., Chicago, introduced new shelf brackets for mounting

Yes, the ASTRON BLUE-POINT's tighter seal and tougher shell give you heat and moisture protection to a degree never before possibleproviding a longer life and greater dependability than has ever been achieved in a molded plastic capacitor! BLUE-POINT is a capacitor you can rely on completely, under every condition.

BLUE-POINT is suitable for continuous operation at $85^{\circ} \mathrm{C}$. The bonded seal uses a special thermo-setting, heat-resistant, non-inflammable bonding agent-positive protection
against moisture. Solder leads as close to the capacitor as you like-they won't pull out! Every BLUE-POINT is clearly marked with voltage and capacitance, bears outside foil identification. Every RLUE-POINT is tested and guaranteed. Look for the ASTRON BLUE-POINT when you buy capacitors from your jobber, or if he doesn't carry it, send us his name. Insist on ASTRON BLUE-POINT, the capacitor you know you can depend on. Order a supply today.

For complete performance characteristics, specifications and listings, write for Bulletin AB-20A

DEPEND ON-INSIST ON
ASTRON CORPORATION

255 Grant Ave., E. Newark, N. J.

in Merit's line
but complete coverage
where it counts!

Keep inventory at a minimum, profits high with Merit's designed - for - action line. Among the new, quickturnover items recently added: flybacks for Motorola replacement, a new series of yokes and TV power transformers. Find Merit's complete line listed in John Rider's Tek-File and Howard Sam's Counter Facts and Photo Facts-Tape Marked* to help you.

And! Be sure to get Merit's new, really complete Replacement Guide. Forty pages of replace-
 ment data and schematics, including IF-RF coils, an exclusive Merit feature.
*originated by Merit
$\begin{array}{lllll}M & E & R & I & T\end{array}$
Coil \& Transformer Corp.
4425 North Clark Street, Chicago 40, Illinois
its Vari-Board serewdriver display shelf anywhere in the store.
Techincal Appliance Corp., Sherburne, N. Y., antenna manufacturer, held another in its series of Taco U.H.F. Television Clinics for service technicians in Buffalo, N. Y. The meeting was co-sponsored by WBUF, channel 17, Buffalo's new u.h.f. station.
Westinghouse Electronic Tube Division, Elmira, N. Y., launched a new premium promotion campaign for its Reliatron tube distributors.

Philco Corp., Philadelphia, has prepared a new 15 -minute $16-\mathrm{mm}$ sound movie, "When u.h.f. Comes to Town," for TV dealers and others interested in building enthusiasm for u.h.f.

RMS (Radio Merchandise Sales), New York City, is continuing its forums on TV antenna problems. Martin Bettan, RMS director of sales and engineering, directed the forums which were held in Ft. Smith, Ark., Zanesville, Ohio, and Fort Lauderdale, Fla. A half-hour TV interview was held after each session.

Heppner Manufacturing Co., Round Lake, Ill., is offering a new sample

rack holding 12 ion traps ranging from 25 to 58 gausses. It is available, without charge, to engineers engaged in TV set manufacture.
Walsco Electronics Corp., Los Angeles, Calif., launched a nation-wide promotion campaign for its new u.h.f. converter, the Imperial. Point-of-purchase material will be an important factor in the program.

Production and Sales

The RETMA reported the production of $3,834,236 \mathrm{TV}$ sets in the first six months of 1953, a record high for the period. Radio production was $7,266,542$.

New Plants and Expansions

Chicago Telephone Supply Corp., has completed a new building which adds about $65,000 \mathrm{sq}$. ft . to its manufacturing and office space in Elkhart, Ind.
Gates Radio Co., Quincy, Ill., opened a new West Coast office and distributing branch in Los Angeles. Robert Kuhl, who has been in charge of West Coast sales, is office manager.

Herlec Corp., ceramic capacitor manufacturing affiliate of Sprague Electric Co., moved its operations to its new plant in Grafton, Wis.

Hallicrafters, Chicago, has begun construction on a new $\$ 400,000$ plant in Toronto, Canada. It is expected to be completed this fall when the company's Canadian subsidiary, Hallicrafters Canada, Ltd., will locate there.

Allied Radio Corp., moved to 100 North Western Ave., Chicago.

Trio Manufacturing Co., completed a new addition to its plant at Griggsville, Ill. Included is $24,000 \mathrm{sq}$. ft. of manufacturing space and a new laboratory.
International Resistance Co., Philadelphia, is building a new plant in Boone, N. C.

LaPointe Electronics Inc., Rockville, Conn., purchased a 95% interest in Circuitron, Inc., a New Jersey printedcircuit manufacturing corporation. Circuitron operations will be moved to Rockville.
Mosley Electronics, St. Louis, moved all its executive and general offices into new quarters at 8622 St. Charles Rock Road. The company's former quarters are now devoted entirely to packing and shipping operations.
Sylvania Electric Products, Television Picture Tube Division, Seneca Falls, N. Y., is perfecting methods and increasing facilities for the mass production of aluminized picture tubes. At the same time, H. Ward Zimmer, Sylvania president, announced the establishment of an Electronic Defense Laboratory to be located in temporary quarters in Mountain View, Calif.
Teletronics Laboratory, Inc., completed a new engineering building adjacent to its manufacturing plant in Westbury, N. Y.
Westinghouse Electric Corp., purchased the Government-owned plant in Lansdowne, Md., which it had been operating under lease. The plant is used for the large-scale production of electronic equipment for the Armed Forces and more recently, for industrial and commercial customers.
Wincharger Corp., Sioux City, Iowa, a subsidiary of Zenith Radio Corp., is planning for the construction of a new manufacturing plant. It will be located on high ground to keep it safe from flood waters, which caused considerable damage to the Wincharger plant last June.

Business Briefs

. . . NEDA's counsel, Glenn Catlin, announced that as a result of an application by the association, a reduction in rates on the return of defective picture tubes to manufacturers' salvage or inspection points had been granted by the railroads' Uniform, Official, Illinois, Southern and Western Classification Committee.
. . . Sangamo Electric Co., capacitor Division, Marion, Ill., provided funds for a research and scholarship program for students majoring in physics at Southern Illinois University.
\ldots Hughes Aircraft Co., Culver City, Calif., is now in full production on her-metically-sealed germanium diodes.
. . . Willys Motors, Inc., Electronics Division, Toledo, Ohio, has entered the television transmitter field.

3 New Electioel Advanees!

Terrific gain!

Horizontal Polar Patterns (Relative Voltage)

$$
\begin{aligned}
& \text { 2000 } \\
& \text { Ch. } 14
\end{aligned}
$$

One of 5
Great New
Channel Master Praducts For Fall!

New

Mechanical Features

- Deep-embossed "rigidized" oluminum dipoles.
- Snap-in assembly. No U-Bolts.
- High-impact molded insulator.
"Free-Space" terminals that prevent picture dim-out caused by the accumulation of dirt, ice or rainwater befween ontenna terminals

CHANNEL MASTER COR
CHANNEL MASTE

CHANNEL MASTER'S

BOW-FLECTOR

 model no. 408The highest gain Bow and Screen antenna ever developed - single or stacked!

Enlarged Reflecting Screen. 53\% more reflecting area - higher, flatter gain level.

Full-Wave Spacing of stacked antennas. Provides highest stacking gain ever obtained in an antenna of this type.

2-Stage Stacking Transformers

for broad-band impedance match. Delivers high stacking gain over entire UHF band.

You've never seen a mast like it!

CHANNEL MASTER'S

strato-matic TELESCOPINGMAST

for antenna installations that are
 - easier • faster - safer

Featuring the Amazing "Third Hand!"

- an automatic, removable locking device that actually acts as your "third hand," holds mast sections up when you let gol The Third Hand converts each guy ring, in turn, into a "safety lock." This permits you to raise sections freely, using only one hand. And sections cannof slide down when you let go.

Automatic Mast Extension

The Step-Up Key, inserted through the bottom of the mast tubing, automatically extends each mast section σ inches. Mast sections are kept partially extended even affer mast is placed in vertical position - without using hardware or locking bolts!

World's Finest Mast Protection!

16-Gauge Masting HOT-DIP GALVANIzED

Most permanent type of mast corro. type of masi corrosion protection ovailare immersed in cauldron of molten canc, until a thick layer of pure zinc is fused to inner and ouler surfaces - so thick it actually adds to the weight of the mast; gives long-term protectionl

ZINC is SELF-HEALING!

When the protective zinc coating is scratched or broken the surrounding zine he suly unding zine aclually goes to work to "heal" the wound. Thus, the base metal is automatically protected against dam age due to installa tion or handling. The only coating with this abilify.

18-Gauge Masting HEAVY ZINC ELECTRO-PLATING

Heavy layer of Heavy layer of ing Army-Navy speci fications provides ffective longalasting freclive prolection agains elements. A chromate dip adds brightness increases corrosion tesistance. The strongest, most dur able protection facket of its type.

Model No. 16.Gauge 18.Gauge		Sections	Lengths	Weights		
		16-Gquge		18-Gauge		
1620	1820		A, B	20^{\prime}	20 tb .	15 th .
1630	1830	A, B, C	30^{\prime}	$32 \mathrm{lb}$.	25 lb ,	
1640	1840	A, B, C, D	40^{\prime}	46 it .	35 tb .	
1650	1850	A, B, C, D, E	50°	61 tb .	47 lb.	

CHANNEL MASTER CORP.

Only $5 \sqrt{-1}$ Has AlI These Feafures:
vertical frea. response:
flat $=2 \mathrm{db} 10 \mathrm{cps}-1 \mathrm{mc}$

- vertical SEns.: 01 yalts rms/inch
- HOR. FREQ. RESP.: flat $\pm 0 \mathrm{db}$ 10 CFS $-200 \mathrm{kc},-4$ do at 500 kc
- HDR. SENS.: 3 volts rms/inch
- SWEEP RANGE: 15 cps-100 ke
- 3-STEP FREa.compensated attinulator eliminates freq. distortior, overloading.
- CATHOQE FOLLOWER inputs to both amplifiers
- PUSH PULL outputs in both amplifiers
- retuén trace blanking
- int. yoltage calibrator

- Y \& trace expansion a centering

 1.5X full screen without distortion.

MODEL 470K

- DIRECT GONNECTION to vert. CRT plates. KIT $\$ 79.95$. WIRED $\$ 129.50$.
- phasine control of internal 60 cas sine wave sweep.
- at frioni panel: intensity mod. injut; 60 CFS, sawtogth outputs. FAMOUS EICO AMAZING FEATURE.PACRED ECONOMY-PRICED 425 K 5" PUSH-PULL SCOPE KIT S4d.95. WIRED $\$ 79.95$.
- AC \& DC volts: $0-5,10,100,500$, 1000 V (30 KV with HVP- 1 probe). 5 ohm ranges from . 2 ohm to 1000 megs. - DC input Z 26 megs. $41 / 2^{\prime \prime}$ meter movement in can'tburnoont circuit. - 1% mult. resis. tors.
221K YTYM KIT $\$ 25.95$. WIRED $\$ 49.95$

- Illum. gear-driven "Speed Rollchart." - New lever-action switches for individ. ual testing of every
element. element. Tests all conventional \& TV tubes.

625K TUBE TESTER KIT $\$ 34.95$. WIRED $\$ 49.95$.
COUNTER CABINET for abow: add $\$ 10.00$ to

- Continuous cover. aye of all TV \& FM freas. from 500 kc to 228 mic. - Sweep width var iable 0.30 mc - Crystal marker oscillator, variable amplitude.

360K SWEEP GEN. KIT $\$ 34.95$. WIRED $\$ 49.95$.

- Large 71/2" meter can't-burn-out circuit.' - AC/DC voits: 0.5. $10,100,500,1000^{\circ}$ (30 KV with HV Probe). - 5 ohms ranges from 2 hm to 1000 megs.
- DC input 226 megs.
- 1% mult. resistors. 214K VTVM KIT \$34.95. WIRED \$54.95.

- Measures \& tests all resistors; 5 ohm to 500 megohms.
- Every type conden. ser, 10 mmf to 5000 mfd . - 0.500 DC voltage source for capacitor leakage testing.
950A-K R-C BRIDGE \& R-C.L COMP. KIT $\$ 19.85$. WIRED $\$ 29.95$.

NOW! oniy
 साजOB -

the Iargest manufactuifer of its kind in the world - gives you LIFETIME SERVICE \& CALIBRATION GUARANTEF*
the Industry's greatest protection for your test equifnent investment!

- $1000 \Omega / V_{i} 31$ ranges - DC/AC voits: Zero to 1,5,10,50, 100, 500 , - DC/AC Current: $0-1$, 10 ma ; 0.1, 1 A . - Ohms: $0.500,100 \mathrm{~K}$ 1 meg.
536K MULTIMETER KIT $\$ 12.90$. WIRED $\$ 14.90$. 526K MULTIMETER KIT $\$ 13.90$. WIRED $\$ 16.90$

- Complete sine wave coverage, 20 200,000 cps in drect-readine ranges.
- Complete squaré wave coverage, 60 50,000 cps.
- Cathode follower output circuit.
377K SINE \& SQUARE WAVE AUDIC GEN. KIT \$31.95. WIRED \$49.95.

- 20,000 $\Omega / V_{i} 31$ ranges - DC/AC/Output volts: $0.2 .5,10,50,250,1000$ 5000.
- DC Current: $0-100$ ua; 10 $100,500 \mathrm{ma}$; 10 A . - Ohms: $0-2 \mathrm{~K}, 200 \mathrm{~K}, 20$ meg.
565K MULTIMETER KIT $\$ 24.95$ WIRED $\$ 29.95$.
dectade condenser box kit 1180K KIT \$14.95. WIRED $\$ 19.95$ - Ail capaciters precision sliver micay ascuracy $\pm 1 \%$ 。
- Range from 100 mmf - $\mathbf{0 . 1 1 1}$ mfd in steps of 100 mmf . - Smooth-action positive detent ceramic switches.
Prices 5e, hisher on Weat Cosat. Specincations and prices sublect to change without notice.

355 K MULTINETER KIT \$29.95. WIRED $\mathbf{\$ 3 4 . 9 5}$
Wrife WOW for FREE Iatest Catalog 10-C

- Fundamentals 150 kc to 34 mc , harmonics to 102 mc
-5-step band switch - Colpitts audio oscillator generates 400 cps pure sine wave voltage - Permits pure RF, modulated RF, or pure AF.
320K SIG. GEN. KIT \$19.95. WIRED \$29.95. 322 K SIG. GEN. KIT $\$ 23.95$. WIRED $\$ 34.95$.
- Resistance values from 0 to 99,999 ohms with 0.5% preci sion. - All resistors have 0.5% 1171K RES. DEGADE BOX KIT, \$19.95. WIRED \$24.95.

- Covers range of 75 kc to 150 mc - 7 calibrated scales accuracy better than 1%.
- Bandspread vernier tuning.
- 4-step RF shielded output multiplier: con stant output Z.
315K DELUXE SIG. GEN. KIT $\$ 39.95$.
WIRED \$59.95.

You build EICQ Kits in one eveming, but . . . they last a lifetime! And you SAVE OVER 50% ! See the famous

WANTED:-INERTIALESS SPEAKERS

. . . High-fidelity sound demands new speakers . . .

By HUGO GERNSBACK

RADIO-ELECTRONICS, during the past few years, has entered a new cycle in which we turn back the clock, look over past accomplishments, and re-adopt them to our advanced age. Thus, the recent transistor development goes back 40 years to the ancient crystal detector, and by using new techniques enables us in many ways to surpass the most modern vacuum tube.
As we develop new techniques in radio-electronics, we find that we often can go back to older ideas which had never been fully exploited, simply because we did not then have the technical know-how. A very recent transistor improvement also reverts back to the silicon detector; it now makes use of the new refined silicon metal. (The silicon used in our old detectors was the natural nonmetallic element).

When we come to our present-day loudspeakers, we are still using the same principles laid down in 1876 by Alexander Graham Bell. Indeed, today's telephones and loudspeakers use the identical principles. We still use diaphragms or cones, which by vibrating displace air in rhythmic fashion so that we hear the sound.
Present-day speakers were good enough until high-fidelity sound came along. It appears certain now that an entirely new instrumentality is needed. One of the chief faults of the present-day speaker is that it gives rise to transient distortion. This is so because the loudspeaker uses a cone and moving coil. These, due to their inherent inertia, keep vibrating after the signal has stopped, thereby creating spurious sounds.

There are other faults in the present-day loudspeakers, the chief of these is that if you wish to cover the entire audio frequency band, you must use more than one speaker. Usually the large speaker covers the lower frequencies, and a tweeter is added for the high notes. Occasionally a third or fourth speaker is added to further divide the band covered by each speaker. What is needed for modern use is an inertialess speaker which should cover the entire audio frequency range. No electromagnetic speaker built on Bell's principle satisfies such requirements.
It is possible that new inertialess speakers will evolve in the future by going back to old speakers which were invented over 50 years ago. There is a long list of such loudspeakers. Some of the principles of many of these can be adapted for modern usage. We will give here only the most important ones.
The Molecular Speaker. This speaker was designed by Ader and was also called the iron-wire telephone. It never achieved great prominence, because while it produced articulated sounds, spoken words were not intelligible, probably due to poor construction of early models. No diaphragm or vibrating body is used in the molecular phone. It consists of a one-millimeter thick iron wire stretched under some tension between two unequal sized heavy copper masses. Surrounding the center of the iron wire, there is an electromagnetic wire spool. In operation the iron wire becomes shorter or longer by magnetostriction. Such a molecular motion is microscopic. The sound issues at one end firom the smaller copper mass referred to above, to which a dish-shaped heavy wooden or hard rubber disc is attached. The sound comes from this disc.

Several decades ago, a Swiss constructor succeeded in making electric dynamos and motors speak loud and
clearly. This, too-it was claimed-was done by molecular agitation. Thus one could stand in a large room while a one-horsepower motor would give off sound and talk clearly.

The Capacitor or Condenser Loudspeaker which has been brought out again in recent years, has not as yet been perfected. It is today used for tweeters in German extended range receivers. This speaker is not a truly inertialess speaker, but comes close to it.

The Electrothermal Loudspeaker was first demonstrated by W. H. Preece nearly seventy years ago. It translates electric currents into sound by an electrothermal effect. This is accomplished by using a very fine wire which is heated and cooled by the varying audio currents. The wire is in free air and its expansions and contractions create sound in the surrounding air. Delange used this principle in constructing ear phones which seemed to work quite satisfactorily in the heyday of wireless.

Another electrothermal speaker was demonstrated over 60 years ago. This speaker was in fact an electrical incandescent lamp. By using appropriate circuits coupled to the lamp, an ordinary incandescent bulb could be made to give out loud sounds and music. The sounds issued from the outer glass envelope of the lamp, despite the vacuum. The sound conduction was through the stem of the lamp, then on to the glass envelope.

The Ionophone is also in this category, and it is a true inertialess speaker.* It was developed by the French inventor, Sigmund Klein. This speaker actually works by molecular movement and heat. It is in actual production in France. It requires a large horn in its operation.

The Talking Arc Lamp invented by Valdemar Poulsen is in the same category. This is also an electrothermal speaker and was much in vogue at the turn of the century. In this speaker you merely modulated the flaming arc. It was a rather satisfactory loudspeaker in those early days. It was used also in one of the very first radio telephones.

Talking Crystals also go back to the old crystal days, but here we have an entirely different phenomenon. Early experimenters in some cases, instead of using a catwhisker on the crystal-Silicon preferredly-employed a razor blade. Now, if the latter was properly adjusted-and this was not easy-you could place your ear near the blade and sounds would issue from it. Here we have a double action. The detector and the loudspeaker have become a single unit. This is an attractive idea, and if it were engineered for present-day uses, one can see where we would do away with perhaps quite a good deal of sound distortion. To be sure we would not be using razor blades, but some other means would have to be evolved.

This is exactly the same principle as when a housewife suddenly finds that her pan in which she is frying eggs on the stove mysteriously proceeds to give out music, or when an ordinary cold water faucet starts spouting singing commercials. There are many instances where this has occurred, usually in the close vicinity of a radio transmitter. Strange as it may seem, engineers have never seemed to follow up this clue. We believe the idea to be a worthwhile lead today.

OSCILLOSCOPE PATTERNS and

Fig. 1-Simple hookup for diagnosing amplifier with oscilloscope patterns.

AMPLIFIER DIAGNOSIS

Oscilloscope patterns enable
complete amplifier analysis
By NORMAN H. CROWHURST

MAGAZINE articles and textbooks often describe the use of oscilloscope patterns to detect or assess amplifier distortion. The method, theoretically, is simple. One merely connects the input of the amplifier to the X plates and the output to the Y plates.

As generally presented in the literature, patterns show the effect of either distortion or phase shift. In practice, distortion and phase shift frequently come together, so a different pattern is produced.

Fig. 1 shows the general arrangement used for obtaining these patterns. Without doubt, the method itself has advantages over either examining an oscilloscope trace of input and output with an ordinary time-base (with or without electronic switching), or analyzing input and output with a wave analyzer. For both methods, the input should be almost a perfect sine wave.

For this method perfection of waveform is not so important-although the source should be at least ostensibly a sine wave. Compared with the viewing of waveform with an ordinary timebase, small degrees of distortion, particularly lower-order harmonics, are easier to detect and identify.

The use of a wave analyzer identifies precisely the component frequencies produced by distortion, but does not indicate how these component frequencies add up to modify the waveform. To diagnose the cause of the distortion, the actual departure of the waveform from its true shape is more helpful than a detailed analysis of the harmonics introduced.

Phase Shift.

To make the whole matter quite clear, we will start by discussing phase shift patterns when no distortion is present. Fig. 2 shows three families of phaseshift ellipses. In each case zero phase shift is indicated by sloping line which means that the spot traverses to and fro along the same trace. Introduction of phase shift opens the line out into an ellipse, and when 90° is reached, the major and minor axes of the ellipse are horizontal and vertical. Beyond 90° the ellipse would tilt the
opposite way, finishing up with a straight line sloping the opposite way for 180° phase shift.

The three groups of Fig. 2 help clarify the significance of the mathematical properties of various ellipses: In the center group the deflection due to the X and Y plates is equal, so the zero phase shift line is at an angle of 45°, and the 90° phase shift trace is a circle. The left and right groups of patterns show the resulting pictures when the X deflection is less and greater than the Y deflection respectively. It is most convenient for diagnosis to use the equal-deflection pattern shown in the center of Fig. 2 if at all possible. In some instances this may not be easy with the equipment available, so it is necessary to make out a pattern on unequal X and Y deflections. Ellipses

Finding the phase angle

The point where the ellipse crosses the vertical or horizontal center line, measured from the center of the pattern, is the sine of the phase-shift angle. (For example, the 30° ellipse crosses the lines at 0.5 the length of the line.) The point on the boundary square of the pattern where the ellipse touches it, measured along that side from the center line, is the cosine of the phase shift angle. The cosine is measured as a decimal fraction of the line, and the angle can then easily be found by reference to a simple table of sines and cosines.

It is naturally easier to use the sine reference for angles between zero and 45° and the cosine reference for angles between 45° and 90°, but it is a good idea to measure off both points as a

Fig. 2-How phase shift shows up on scope. and how it may be measured.
are shown for 10° intervals of phase shift from zero to 90°, and the 30° and 60° phase-shift ellipses are identified and distinguished from the others by being drawn blacker.

Points by which to deduce the phase shift of any given ellipse are marked on the figure. The best way to measure such an ellipse is to place a transparent cursor with graph ruling in front of the oscilloscope and adjust both deflections so as to fill an even number of squares. This provides a handy reference. Consider half of one side of the square containing the pattern as equal to the unit "one." Using this graphical unit of distance, the location of the points indicated (along the left and bottom edges) is measured from the center or center line of the pattern.
check, particularly where the angle lies between 30° and 60°. It is also a good plan to take an average of all four possible reading points for each value, to eliminate any error due to the ellipse not being quite correctly centered in its boundary square.

Distortion

If the reader has tried to calibrate an oscillator with Lissajou patterns, as described in the author's article in the November, 1952, issue of Radio-Electronics, he will have noticed that when the patterns are not quite locked they appear to be moving around. The direction of movement is somewhat subjective; that is, it depends upon the imagination of the viewer at the moment.

The movement could be imagined as

Fig. 3-Setup for injecting phase shift into either X or Y plate feed circuits.
being due to a pattern traced on a transparent cylinder, which is rotated on its axis so the pattern on the far side is viewed as if it were superimposed on the pattern in front. The cylinder could equally well lie on a horizontal or vertical axis, whereupon the movement due to its apparent rotation will appear at right angles. If either of the patterns has a slight distortion, particularly noticeable at one point in the waveform, the direction of the axis of rotation seems to be identified by the movement of this distortion point. For example, if there is a little kink in the 60 -cycle waveform due to rectifier pulse current in a power-supply unit connected to the same power line, this kink will maintain a regular position horizontally, moving up and down along a vertical line in the trace, and the kink will appear at all points in the pattern where it crosses this vertical line. This will give the impression that the pattern is moving up and down vertically, or rotating on a cylinder with a horizontal axis. On the other hand, if the output from the oscillator has a similar definite distortion mark, the apparent movement will be the opposite way, the distortion mark traveling along a definite horizontal line in the pattern, as if the rotation were due to the pattern being traced on a cylinder with a vertical axis.

All this is perhaps a little easier to visualize with Lissajou patterns where the frequency applied to the two sets of plates differs. For our purpose the frequency applied to both sets of plates is the same and the pattern does not move because the phase difference re-
mains constant. However, there are ways of making the pattern move by introducing phase shift deliberately, and this can be an aid in recognizing the particular form of distortion.
Fig. 3 shows that deliberate phase shift can be introduced into the signal fed to the X plates or that to the Y plates. For practical purposes it is best to introduce phase shift only into the undistorted signal fed to the \mathbf{X} plates, because a phase-shift network will alter the shape of waveform distortion, making it harder to recognize.
Fig. 4 shows the effect of phase shift applied in this way, together with construction lines (representing our imaginary cylinder) to help visualize the movement of the trace as phase shift takes place. The pattern at B shows the trace due to simple distortion with no phase shift. This distortion could be due to grid current or similar action producing clipping. The bent thick line can be regarded as an ellipse viewed edge-on, with the ends bent over, rather like what might happen to the rim of a bicycle wheel if it fell into a slot in the paving and the rider fell off the bike sideways. The thin lines are construction lines to identify the position of the sudden bends, and can be regarded as intersecting circles viewed edge-on.
The pattern shown at A is due to phase shift in the deflection of the X plates, and C shows the effect of phase shift in the deflection of the Y plates only.
The remaining patterns, D, E, and F, show the effect of combined phase shift on both sets of plates, maintaining the same phase shift in the Y-plate deflection as that shown at C , which means that the points on the actual trace will move along horizontal lines as the X shift is varied. To aid in visualizing this, horizontal lines are drawn for the points where the curve suddenly changes, at C, D, E, and F. To allow these points to move on a path similar to a point on the surface of our imaginary vertical cylinder, the original

Fig. 4-How a distorted trace's shape varies with phase shifts. See text.
construction lines, becoming ellipses, move in the peculiar manner indicated at D, E, and F. The arrows on the ellipses indicate an imaginary direction of rotation consistent with the ar. rows on the thick line showing direction of spot movement. This direction is arbitrary and might easily be in the opposite sense to the one shown.

At D the phase shift in both deflections is in opposite ways, so the resulting pattern is more opened out. At E the two phase shifts are the same way and the same amount, so, if no distortion were present, the straight line, due to the equivalent ellipse being viewed edge-on, would be restored; but the bent-over portions are now moved round so they appear as loops moving away from this straight line. F shows the way the pattern distorts when the X phase shift is in the same direction as the Y shift, but bigger, so as to turn the pattern inside out.

Fig. 5-A simple phase-shift network.
Some of these variations may occur in practical amplifiers. Phase shift may occur before the distortion sets in and further phase shift may be introduced after the point of distortion. If the phase shift is due to the fact that the frequency of the signal is either at the high or low end of the spectrum, it will be progressive, all in the same direction, as the signal goes through the amplifier, before and after the point where distortion occurs, but if viewed from the point of distortion, the earlier phase shift will be in the opposite direction from the shift after that point (the signal on the X plates will be in advance of the point of distortion and that on the Y plates behind it in phase.
So this combination would produce a pattern somewhat like that shown at D in Fig. 4. Phase shift only before or after the distortion point would give an effect similar to the trace shown at A or C respectively of Fig. 4.

To aid in recognizing patterns due to practical amplifier distortion, it may therefore be helpful to inject deliberate phase shift into the signal fed to the X plates. Fig. 5 shows a simple circuit that will give continuous phase shift variation up to about 30° either way from the zero position. The capacitors are marked in terms of their reactance at the frequency for which the network is used. Of course, it can be used only at one frequency, or over a very limited range of frequencies, with any particular set of values, but the arrangement could be modified by switching in different capacitors to provide phase-shift facilities at different preset frequencies. This type of network is used for phase shifting in many test instruments.
Fig. 6 shows the arrangement applied with switching for frequencies of $100,1,000$, and 10,000 cycles. An
extra switch is provided so the phase shift network can be inserted or removed at will. This enables the frequency applied to the amplifier to be swept through the frequency spectrum without deliberate phase shift, switching over to the phase-shift arrangement at the preset frequencies of 100 , 1,000 , and 10,000 cycles for more detailed investigation of the pattern at these points.

Fig. 6-Three-frequency shift network.
Fig. 7 gives a complete set of prepared patterns for a variety of typical defects in amplifier performance. The pattern for no phase shift is arranged in the second column from the lefthand side for convenience-that for X phase shift only being to the left, and that for Y phase shift only to the right of it. The remaining columns give the effect of equal X and Y phase shift of 30°, the opposite way and the same way. The kind of defect giving rise to the distortion is noted down the left edge of the diagram.
The first four groups of patterns relate to clipping due to grid current or similar action and curvature due to tube characteristics. The former may be due to inadequate grid bias and the latter to too much grid bias. Wrong plate loading can also cause these troubles. Some of the patterns show little difference between the two kinds of distortion. Notice where the X and Y phase shift are the opposite way. Here the difference between the two kinds of pattern is very small, and would be difficult to identify on an actual trace; this means that if some phase shift occurred before distortion, with some more phase shift after it, it would be difficult to determine which of these two kinds of distortion were taking place. Introduction of phase shift in the X plates to neutralize that in the amplifier before distortion occurs would produce a pattern similar to that shown in Fig. 7, in the column "Y phase shift 30°," where the difference between the two forms of distortion is quite clearly identified.
If sufficient phase shift were introduced in the feed to the X plates to offset all the phase shift in the amplifier, the trace would be similar to that in the last column of Fig. 7. Here again the patterns are distinctly different. Probably the easiest point to detect the difference is that where the trace divides: In the pattern due to clipping, the curve splits abruptly, but in the pattern due to curvature it forks apart smoothly.
The next line of patterns illustrates the kind of distortion due to magne-
tizing current in a transformer core. For the previous patterns it would be immaterial which kind of X phase shift were introduced (by itself), because the pattern with no phase shift has a kind of symmetry demonstrated by the fact that the spot retraces its path to produce a single line trace. With this kind of distortion, such symmetry cannot exist, so 30° phase shift produces a different pattern, according to which way the phase is shifted. One direction is indicated in the figure by the solid line, and the opposite kind of phase shift, where it follows a different course, by the dotted line.

Where the phase shift through an amplifier is progressive, as at low frequency, the dotted line pattern would be the one seen, but where a similar phase shift is inserted in the deflection to the X plates, the solid line pattern would be produced. The effect of phase shift after the point of distortion is showr in the "Y shift 30° " column, and
combinations of phase shifts in the remaining two columns.
Another kind of distortion that produces patterns somewhat similar to transformer core distortion in some phases occurs when tubes in class-B operation are badly matched so that one tube cuts off before the other starts to conduct. A variety of patterns for this case is shown in the next line of the figure.
The last line illustrates the kind of pattern produced when high-frequency ringing occurs in the drive transformer of an output stage where positive excursions of the output tube grids are encountered. The ringing is due to shock excitation of an ultrasonic resonant frequency in the drive transformer circuit each time grid current ceases.

A further article will show how the oscilloscope can be used for localizing unexpected factors in the performance of an amplifier.

END

Fig. 7-Common forms of distortion with different phase shift combinations.

HICH-OUALITY AUDIO

By RICHARD H. DORF*

Fig. 1-Audio room at Terminal Radio Co., NYC, exhibits variety of components.

THE INDIVIDUAL who has decided to invest in a custom-made home music system is putting himself in a somewhat different class from those who are satisfied with ordinary department-store combinations. He may be able to find a custom builder and rely wholly on the man's tastes and recommendations, but that procedure is rare. It is much more common to find prospective owners beginning to learn something about audio and electronics so that they can make intelligent purchases of components. Possession then becomes an individual thing as distinguished from the mass-market push-the-button-and-it-goes product.

When a home is to be newly equipped for high-quality audio, the first question is what facilities are desired. Most owners want a phonograph, which consists of a changer or a turntable, arm, and cartridge. Most also desire radio, though not always limited to AM, especially in a city like New York where all major and many minor stations broadcast also on FM. This calls for a tuner. An amplifier is always necessary to convert the voltages from the tuner and phonograph pickup to power, a speaker or speaker system is a necessity.

The most pressing problem is selection of the components. As in any integrated system, the poorest component

[^1]determines the quality of the final sound. It is foolish, for instance, to have a first-class three-way speaker system in a big, solid box at a cost of four or five hundred dollars, powered by a $\$ 30$ amplifier. The same money would be better spent on a good amplifier, which can greatly improve the performance of an inexpensive speaker. A good speaker will show up all the faults of the poor amplifier. So when a budget figure is arrived at, the money should be apportioned carefully to achieve an integrated system-each component as good as funds will allow, with the money spent for the various components proportionately to do the most good.

Loudspeakers

The impetus of public demand given to designers and manufacturers of highquality audio equipment has resulted in vast equipment improvements in a short time. Amplifiers have advanced to the point of near perfection in sound quality. All one has to do to get an entirely adequate amplifier is pay for it. Very high-quality turntables and tuners are available. Records today are not perfect, but they are fine; pickups, while far from perfect, are not qualitylimiting factors. The one component which limits the performance of the system when the rest of the components are optimum is the loudspeaker.

Part II-Loudspeakers

The loudspeaker is usu-
ally the weakest link in
a high-fidelity sys-
tem. A knowledge of loud-
speakers makes for
a most economical choice

The basic reason is that it is a powerproducing transducer, of which the utmost versatility is required. It must take electrical signals and translate them to movements of air. It must do this over an exceedingly large range of frequencies, $(1,000$ to 1 if the limits are 20 and 20,000 cycles), and the air movements it creates take in a range of almost 70 decibels between the smallest and largest. In addition, it must create no movements on its own. This is a tall order and is not fulfilled by any speaker system so far developed. The performance of a loudspeaker is greatly affected by its housing and mounting and by the amplifier which drives it.

Since even the finest of loudspeakers fall considerably short of perfection, the best way to place one in a system is to listen to several within your potential price range, know a little about speakers in general, and then make your choice to take advantage of whichever one within your spending range does best. The listening and initial selection can be done in any of the many audio equipment salesrooms throughout the country, most of which are run by electronics jobbers. Fig. 1 shows a portion of the audio room at a New York electronic parts distributor. Most of the items are actually connected to a central distribution panel so that the customer can listen to as many systems as he wishes, each composed
of components of his choice and put together in a few seconds at the distribution panel. Unless mail order is the only means, good audio equipment should not be bought without giving an ear to it at a showroom and comparing it to other models. This is especially true of speakers. Since speakers fall short of perfection, each speaker and each system has to a large extent its own sound character. The only way to get satisfaction is to choose the one whose sound suits you.

A loudspeaker is basically nothing more than a reversible d.c. motor. The motor is powered by audio currents from the power stage of an audio amplifier. Its output motion is not rotary but reciprocating-back-and-forth. Its load is the air, and thereby hangs one of the great difficulties of good sound reproduction. Air is compressible, and coupling the moving speaker cone to it becomes more difficult as the cone movement becomes slower. You can see that for yourself, by holding a piece of paper in your hand and moving it so that the area of the paper is opposed by the air. If you move the paper slowly it goes quite easily; the air is gently compressed and moves out of the way. If you move the paper fast, it bends, showing marked air resistance. Similarly in a speaker a fast-moving cone (excited by a high frequency) has no difficulty making the air move. But at low frequencies a cone moves practically no air at all. To make it do so, special provisions are required, such as the use of a large cone (obviously a large piece of paper will move more air at slow speeds), an enclosure so the air cannot readily move out of the way; or some artificial reinforcement such as a bass reflex port in the enclosure.

Speaker structure

The General Electric S-1201-D loudspeaker is a 12 -inch unit in the low price range but with surprisingly excellent sound characteristics. It is especially built for home music systems of the more modest type where a single speaker does all the work. Its structure is fairly typical of such units. The working parts of the speaker are shown in the cutaway photo, Fig. 2, and the exploded view, Fig. 3.

The primary parts of the speaker are the magnet and voice coil. The magnet is a cylindrical piece of Alnico V, an alloy of magnetic metal which forms a permanent magnet of exceptionally high field strength. Alnico V is used in practically all good speakers. The more sensitive speakers have magnets of greater size and weight, ranging from a few ounces to 5 pounds or more. The magnet shown weighs 14.5 ounces.

The voice coil is a low-impedance coil mounted on a cylinder of aluminum and placed within the field of the magnet. When current flows through the voice coil the magnetic field set up by the current either aids or opposes the field of the permanent magnet. The excitation for the voice coil is a.c. at audio frequencies. This causes the polarity
of the magnetic field around the voice coil to reverse every half-cycle. As a result the coil moves forward and back at a frequency determined by the audio excitation.

The nature of the voice coil's movement follows the laws of electromagnetic phenomena. In an ideal speaker, the amount of movement for a given excitation frequency, is proportional to the peak value of the a.c. For a given peak value of a.c. the amount of move ment is inversely proportional to frequency; there is greater movement at low frequencies than at high frequencies. It might appear at first thought that this would result in bass emphasis but, like all of Nature's laws, the relationship of air movement, frequency, and ear sensation fit together nicely The amount of sound sensed at any frequency is a function of the sound power. The power of a movement is proportional to the product of velocity and distance. The same amount of power is expended in moving a bedroom bureau 10 feet at the rate of 50 feet per minute as you would moving it 20 feet at a speed of 25 feet per minute, other things being equal. At low frequencies the voice coil pushes the cone farther but slower-and at the high it does the job faster but not as far.

The voice coil is part of an assembly which includes the spider. The spider is a piece of fabric with corrugations for flexibility. It holds the aluminum coil form in place, when the edge of the circular spider is fastened in place on the frame as shown in Fig. 2. The steel core is fixed in place by the magnet assembly and the voice coil form slips over it so that the coil stays centered and can move only in its axial plane. A felt dust-cap is cemented over the open outer end of the coil form.

The cylindrical magnet is held in place by compression between a discshaped front plate of steel, welded to the frame, and a back plate of the same shape which is pressed against the magnet and secured with three bolts. A cover is fitted over the entire magnet assembly and is held in place with a bolt. This prevents dust and stray magnetic metal particles from getting into the assembly and possibly impeding the movement of the voice coil and distorting the magnetic field, resulting in loss of fidelity.

The cone is the element which actually pushes the air. Its inner (small) end is attached to the outer end of the voice coil form and its outer end is cemented to the outer end of the main steel frame of the speaker. Fig. 4, a front view of a speaker, shows that there is a more or less right-angle fold at the outer edge of the cone as well as a couple of accordion pleats. With this provision the body of the cone can move in and out without being greatly restricted by the outer edge fastening. When the voice coil moves back and forth as a result of the changing magnetic field set up around it by the audio current, it pushes the cone in and

Fig. 2-Cutaway view of modern loudspeaker.
out. The cone, in turn, moves air and sets up sound waves.

Speaker quality factors

The description we have just given illustrates the essentials of speaker construction. Most speakers, big and little, good, bad, and indifferent, are put to gether in roughly the same way. What, then, makes the differences between speakers?

We have mentioned that the size of the magnet determines the sensitivity of the speaker. This is because the stronger the magnetic fields the greater will be the motor action. It is also possible with a larger magnet to create a more uniform magnetic field over the distance through which the voice coil travels. Any nonuniformity of the field means that the voice coil will fail to move in exact accordance with the audio output of the amplifier, since a given coil current will not produce the same movement at all voice-coil positions. All other things being equal, look for a large magnet when you buy; catalogs rate them in weight.

Electromagnetic speakers once were common. They had no permanent magnet; the field was created by a large coil of wire in the same position as the magnet in present-day speakers. It was excited by direct current either from a special power supply or from the B supply of the set. Electrodynamic speakers are subject to hum from the field supply, and they waste power. Avoid them for high-quality systems.

Voice coils are invariably of low impedance, never higher (except in very special cases) than about 16 ohms. The reason is that higher impedances could be obtained only by more turns. That would increase the weight of the coil and restrict its ability to move quickly in response to high frequencies. It would also, of course, cause overshoots and lags. The nominal a.c. impedance of a voice coil has no relation whatever to the quality of a speaker, but its actual ohmic resistance does.

Ideally the impedance should be pure inductance, since a pure reactance consumes no power. The power fed to the speaker should be used to move air, not to cause heat in the voice coil. Even a small amount of ohmic resistance in a voice coil creates a surprising loss of efficiency.

In a working speaker the mechanical work done by the cone causes the voice coil to draw current from the amplifier. The situation is somewhat analogous to a transformer whose primary draws more current when the load resistance across the secondary is made smaller. It is only the inductive part of the net voice-coil impedance which can make the cone move. The "reflected" resistance of the cone should be the largest part of the voice-coil resistance. (Resistance is defined in this case as the
an ordinary receiver, a department store console or an old-style amplifier, is the audio source, the aluminum ribbon is worth little if anything.
The cone is important because it is the air mover. Its salient features are material, shape, and mounting. Little can be said about cone material because manufacturers choose it without telling the buyer what they have chosen. In general the cone is made of paper and not a very tough paper at thatin fact, when it is not inherently soft and fibrous, it tends to be somewhat brittle. For some unknown reason cones are not usually moistureproofed. So, when handling a speaker, be extremely careful not to let anything touch the cone, back or front, and rest it on a flat surface, face down. I have handled hundreds of speakers and I always treat
what beneficial, since it approximates the beginnings of a small exponential horn, which is the best way to couple the speaker to the air (more on this subject in the next installment).

Another school holds that the cone ought to be as flexible as possible. In a speaker which reproduces all frequencies (not used with a tweeter) the cone tries to move over a large path slowly and over smaller subpaths quickly at the same time. With stiff cones this may cause cone breakup-different parts of the cone moving in different ways and producing air movements with no predictable relationship to the audio input. Some manufacturers prefer to have very flexible cones. They achieve this by pleating the cone in the manner of the wide-range University 6200 shown in Fig. 5. The pleating or ac-

Fig. 3 - Exploded views shows the many integrated parts of a modern loudspeaker.

inclination of the coil to draw current.) Not only does current passing through ohmic resistance of the coil not do any work, but it also contributes to nonlinearity of cone movement. We do our best in high-quality amplifiers to provide enough inverse (and sometimes positive current) feedback to make the resistance the speaker sees a low one. When we do this we expect to have the cone moving according to the current, even though the air represents a constantly changing load. But when the voice coil has d.c. resistance the effect is the same as when a series resistor is inserted in a battery circuit.

Ohmic resistance is reduced by using as large-sized a wire as possible without adding too much to the coil's weight. In the most elaborate speakers the voice coil is made of aluminum ribbon wound on the form on edge so that the result looks like a stack of circular cooling fins. The ribbon presents a large area for current flow, which greatly reduces the resistance of the winding. Aluminum is used rather than copper for the sake of smaller mass. Makers of speakers with aluminum-ribbon voice coils usually feel it worth while to advertise the feature, and justifiably so since it makes for a high-quality speaker. Low d.c. resistance in a voice coil, is useful to preserve the regulation advantages of an amplifier with a good amount of negative feedback. If

Fig. 4-Front of speaker. Note right angle fold and accordion pleats at edge.
them gently. While radio-set or publicaddress speakers can be re-coned by most service technicians, high-quality units require factory repair. Since a new cone is necessary if the old one has even a small rip, hole, or uneven spot from moisture, take care! When mounting speakers in cabinets or on baffles, cut a piece of heavy wire mesh -quarter-inch squares are good-and mount between speaker and panel.

Shapes and mountings of cones differ greatly among manufacturers. In general, cones either have straight sides or are flared. The flare, which can be seen plainly in Fig. 2, seems to be some-
cordion principle to achieve flexibility is commonly used around the outer edge of almost all cones. There is so much variety in effect possible, considering the materials and details of shape and mounting, that a blanket recommendation is impossible. The best procedure is to listen to several speakers and take the one that sounds best.

In the next installment we will talk about enclosures, multispeaker systems, and other facts concerned with getting the most out of the speaker you buy. END

Fig. 5-Loudspeaker using completely pleated cone for maximum flexibility.

extending amplifier BANDWIDTH

By JOSEPH MARSHALL

|N THE first part of this series, we dealt with some of the difficulties in the way of extending the bandwidth of amplifiers and discussed in some detail the problem of extending the bandwidth downward. Having lengthily considered the low end, we now come to the question: What about the highs?

We can take several measures to extend the high-frequency response. It is limited principally by shunt capacitances and the Miller effect. We can start by using miniature tubes in volt-age-amplifier and phase-inverter sections. Their capacitances between elements are about half those of the larger tubes. Second, we can design these stages with very low plate loads. Although this results in lower gain and output, it also results in lower losses at high frequencies. Single-ended tubes will deliver enough gain for preamplifier service with plate loads of 50,000 ohms and complementary grid leaks; push-pull tubes can use a higher load. We can improve the h.f. response still further by leaving out the cathodebypass capacitor and thus producing current feedback. The reduction in gain is not significant at audio frequencies but the improvement in h.f. response definitely is. We can also use, especially with single-ended stages, cathode com-

Fig. 1.-A method of h.f. compensation.
pensation as in Fig. 1. This method of operation produces degeneration at lower frequencies but full amplification at the high frequencies. For best results the value of the cathode-bypass capacitor should be adjusted with a square-wave generator and a scope. Values from . 01 -uf downward can be tried until maximum flatness is obtained. This method can also be used with push-pull amplifiers (using separate bias resistors) but the same result can be achieved much more simply by inverse feedback.

The greatest villain in the picture as far as h.f. response in triodes is concerned is the feed-through provided by plate-grid capacitance and the Miller effect. The effective capacitance is the product of the actual grid-plate capacitance times the amplification factor of the tube. Thus, if the tube has a gain of 12, and a grid-plate capacitance of $3 \mu \mu \mathrm{f}$, the effective capacitance becomes 36 u μ. The reactance of this capacitance at frequencies higher than 10 kc becomes low enough in relation to the grid resistance to result in considerable attenuation of these frequencies.

There is an extremely simple means of eliminating the Miller effect which should be used more often in highfidelity design. That means is neutralization. Single-ended stages are hard to neutralize at audio frequencies, but push-pull stages are so easily and cheaply neutralized that there is almost no excuse for not including this means of extending the h.f. response.

Voltage amplifiers are cross-neutralized with fixed capacitors approximately equal in value to the grid-plate capacitance of the tubes. If miniature tubes are used, as they should be for reasons which will follow, fixed gimmicks of 1.5 Muf serve for the $12 \mathrm{AT} 7,12 \mathrm{AU} 7$, $12 \mathrm{AX7}, 12 \mathrm{AY} 7,6 \mathrm{C} 4$, or 6 AB 4 . They are simply wired in from the plate of one tube in a push-pull stage to the grid of the opposite tube in the same stage, as shown in Fig. 2. Fixed capacitors can be used for output tubes in a similar manner; or, for perfect neutralization, ceramic trimmers of the $4-30$-m 1 fype can be wired in and adjusted for complete neutralization. To adjust, simply

Fig. 2-Cross-neutralization circuit.
break the filament circuit to the output tubes, feed in a signal, and adjust the capacitors for null or minimum output.

There is another way of neutralizing the grid-plate capacitance of tetrodes used as triodes in output stages. This is by employing the Ultra-Linear type of operation or a nodified form of it. As indicated in Fig. 3, this form of operation connects the screens to taps on the output transformer. For most effective Ultra-Linear operation the screen taps should be about 18% of the impedance of the plate taps. However, ratios as low as 2 to 1, though not providing true Ultra-Linear operation, will minimize the Miller effect. The portion of the load between screen and plate isolates them so far as the tube capacitances are concerned and the tube behaves as a hybrid between a triode and a tetrode. The reduction in Miller effect is very similar to that of neutralizing - the high-frequency response is improved.
Optimum Ultra-Linear operation requires a special transformer. Many output transformers, however, provide two sets of primary taps- 10,000 ohms and 5,000 ohms, or 6,600 ohms and 3,370 ohms, for example. Connecting the screens to the half-impedance taps will affect the power output and distortion characteristics very little, but will flatten the h.f. response.
With neutralization, the remaining h.f. losses are a matter of shunting capacitances only. Once more the use of miniatures helps, especially when neutralization is used. Neutralization, though eliminating the Miller effect, doubles the output capacitance of the tube. The output capacitance of miniature tubes is half or less that of the standard tubes. So, even after neutralization, the miniatures have a better output-capacitance characteristic than the larger tubes.
Lowering the plate and grid loads improves the h.f. response by improving the ratio of load to shunt reactance. Direct coupling also helps, because circuit and stray capacitance is reduced. Feeding a tube from a low-impedance source also minimizes Miller effect. Thus the 12AX7 second section of the cross-coupled inverter described in Part I, last month, being fed by the
very low load of the cathodes of the first section, is affected by the Miller effect only beyond 100 kc . Similarly, in the case of the output tubes directcoupled to the cathode-follower driver, the Miller effect becomes serious only beyond 50 kc , whereas in the self-bias circuit with a 500,000 -ohm grid resistor, it becomes serious shortly after 10 kc . These are approximate frequencies.

Inverse feedback

Use of miniature tubes, neutralization, and the other measures referred to, can extend the response of an amplifier using the direct-coupled front section of Fig. 1 in the September installment and either of the power amplifiers described in this part, to 50 ke or slightly beyond. But this is still about an octave less than the flat response of the best output transformer. One further step can be taken to extend both the low- and the high-frequency response-and that, of course, is inverse feedback.

The conventional amplifier, as exemplified by the Williamson circuit for instance, uses a single feedback loop. Better results can be achieved by using

Fig. 3-The Ultra-Linear approach.
two loops. One would be an internal loop to flatten the response of the amplifier exclusive of the output transformer, to maintain dynamic and frequency balance, and to cancel part of the distortion. The second would be an over-all loop for correcting the response of the output transformer, further reducing distortion, and wiping out any bumps or slopes in the over-all response.

In the virtual direct-coupled amplifier we have been developing here, the internal loop can be very profitably carried from the plates of the output tubes to the cathodes of the voltage amplifier. Because the cathode resistors of the voltage amplifier are 120,000 ohms we can easily keep down the phase shift in the loop, and indeed we can correct the phase shift produced by the single coupling capacitor. For 10% feedback we can use a 1.2 -megohm feedback resistor. If we now select a capacitor which gives us the same time-constant as the interstage coupling capacitorresistor network, we achieve what amounts to neutralization of the interstage coupling capacitance. This is true because the two capacitances produce phase shifts in opposite directions -the interstage capacitor reducing gain, and the feedback capacitor increasing gain at very low frequencies. For exact neutralization the feedback
factor should equal the gain between the interstage capacitor and the output tube plates; and by a coincidence, 10% feedback to a pair of 12 AU 7 s produces a feedback factor of 5 which is almost exactly the voltage gain of the big output triodes, or tetrodes used as triodes. Actually, it is not necessary to neutralize precisely, and even a considerable under- or over-neutralization will be satisfactory in practice. So in the case of the amplifier with self-bias we could use a $0.25-\mu \mathrm{f}$ feedback capacitor, yielding an approximate time-constant of 0.25 second, and in the case of the amplifier with fixed bias, a $0.5-\mu f$ capacitor, yielding a time-constant of 0.5 second (Fig. 4). The phase shift in the feedback loops would begin at about the same point, but would go in the opposite direction from the shift caused by the interstage coupling capacitance. The final result would be the extension of the low-frequency response to around 1 cycle in the fixed-bias amplifier, and to 2 cycles in the self-biased amplifier.

With a $12 \mathrm{AU7}$ as the voltage amplifier, 10% feedback will provide 14 do of effective feedback. This is more than enough to extend the high-frequency response at least another octave and probably two octaves. This will make the over-all response from input of the cross-coupled inverter to output-tube plates nearly flat from 1 or 2 cycles to beyond 100,000 cycles. Moreover, since this feedback loop includes the two stages responsible for the largest part of the distortion-the output tubes and the voltage drivers-the 14 db feedback produces an improvement of 5 times in distortion characteristics. Finally, if we match the resistors and capacitors in the feedback loop, we will achieve dynamic and frequency balance. So long as we deliver equal signals to the grids of the 12AU7 voltage amplifier, which we can easily do with the balancing control in the cross-coupled input, the loop will maintain that balance over the dynamic range of the amplifier.

Over-all feedback loop

When we now add an output transformer to the circuit we have just developed we obtain a picture rather different from the one we get when the same transformer is applied to the conventional circuit with its narrow bandwidth. First of all, it is obvious that with so little phase shift in the amplifier proper, the amount of feedback we can introduce from the transformer secondary to the input is limited only by the characteristics of the output transformer itself.

With the best transformers available today, the amount of feedback is actually limited only by the loss in gain we can afford. We have applied as much as 40 db of feedback-in addition to the 14 db of the inner loop-before instability resulted. Actually we need less than 20 db in this loop to correct for phase shifts in the output transformer and decrease the remaining distortion to a negligible level.

The total feedback, as far as the output and driver stages are concerned, would be 30 db or more. This would reduce distortion by a factor of 30 or considerably below 1% at maximum output. 14 db should be sufficient to take care of any remaining imperfections in the response of the best grade of output transformers.

Cheap output transformers

An ordinary public address-type output transformer and about 20 db of over-all feedback in the over-all loop will produce results in this circuit which are about as good or better than those

CJRVE C- RESULTANT OVERALL RESPONSE

Fig. 4-The phase shift at low frequencies is neutralized in this circuit. obtained with high-priced transformers attached to conventional narrow-band amplifiers. After all, it doesn't much matter whether the phase shift takes place in the output transformer or in the rest of the amplifier. An amplifier with considerable phase shift in the output transformer but very little in the amplifier itself will have an over-all performance very nearly comparable to that of an amplifier with a wide-range transformer and a narrow-band amplifier. There are other factors, such as core saturation, to be sure; but for many purposes, particularly that of obtaining acceptable high-fidelity reproduction at the lowest cost, an amplifier employing the measures we have discussed here with a public address-type transformer will be practically indistinguishable from the great majority of today's high-grade high-fidelity amplifiers employing high-priced transformers but possessing poor internal bandwidth.

In a very early issue accordingly, we hope to present a practical low-cost version of the Golden Ear amplifier, incorporating the various measures discussed in this and previous articles and producing-at a cost of $\$ 25$ or less-the reproduction which will compare very favorably with that of $\$ 100$ amplifiers.

END

TThe "goodness" of an amplifier is not shown by its circuit diagram. Circuits have no inherent magic properties, but are merely the tools with which the designer seeks to achieve a certain result, and different designers-provided always that they have the same high standards in view-may achieve the same results by different means.
 —D. T. N. Williamson

 High-Quality Circuits

 High-Quality Circuits}

Utilization of tone and loudness controls

to improve amplifier frequency response.

By JOHN K. FRIEBORN

Tone control

The Bogen model DB20 amplifier uses a tone-control circuit (Fig. 1) which apparently has not yet been used in any

Fig. 1-The Bogen DB20 tone control. other American amplifier, although it is similar to one published in England ${ }^{1}$. It allows independent bass and treble control, with maximum boost and attenuation as shown in the curves of Fig. 2 .

Fig. 2-DB20 control characteristics.
The bass-control section of the circuit includes two signal paths to the grid of V1-b, an input-signal path through R3, C2, and the left-hand section of R4, R6, and R7, and an inversefeedback path via C8, R5, C3, and the right-hand section of R4. R4 is bypassed for high frequencies by C 2 and C 3 , so
that high frequencies are unaffected by the position of the control. When R4 is divided by the arm into two sections whose resistances are in the same ratio as the reactances of C 2 and C 3 , the same ratio of input signal to feedback signal is obtained at all frequencies and the response is flat. When the arm is moved toward R3, low-frequency incoming signals are attenuated less and feedback signals are attenuated more, so the gain at low frequencies increases. Moving the arm toward R5 has the reverse effects.

The treble-control section consists of an incoming-signal circuit and a feedback circuit, each with two paths. One incoming-signal path, through R3, C2, R6, and R7, has an approximately constant impedance at high frequencies. Through the other path, consisting of the left-hand section of R 8 and C 5 , additional input signal at high frequencies can be bypassed around the first path, thus increasing the gain by an amount which depends upon the position of the arm of R8. The treble attenuation is controlled by the two feedback paths. The first, through C8, R5, Cs, R6, and R7, has approximately constant impedance at high frequencies. Through the other path, consisting of the righthand section of R8 and C5, additional feedback can be obtained and the treble can be attenuated by an amount depending upon the position of the arm of R8. When the arm is opposite the grounded tap on $R 8$, no additional input signal or feedback is obtained and the treble response is flat.

Loudness control

Two recent amplifiers present different solutions to the old problem of tone-
compensated volume control or, as it is now called, loudness control. Both solutions consist of a tone-compensated "loudness control" used in conjunction with an uncompensated volume control. The loudness control used in the remote-

Fig. 3-Loudness control circuit in Stromberg-Carlson AR-25 amplifier.
control unit of the Stromberg-Carlson model AR-425 custom amplifier is a continuously-variable type, as shown in Fig. 3. The three potentioneters are ganged and move together in the direction indicated when the loudness is de-

Fig. 4-AR-25 loudness control curves.
creased. The attenuation due to R1 and R2 is increased and the attenuation due to R3 is decreased. C1, shunting $R 2$, provides relative treble boost, and
the circuit consisting of C2 and R6 provides bass boost. This circuit is similar to the IRC loudness control ${ }^{2}$, except for the addition of R6 and a change in the values of the capacitors. The attenuation characteristic for the circuit of Fig. 3 at several settings is given in Fig. 4.

Fig. 5-The loudness control circuit of the Bogen model DB20 amplifier.

The loudness contour selector, as it is called, in the Bogen model DB20 amplifier, is a step-type control. (Fig. 5.) Unlike most previous step-type loudness controls ${ }^{3}$, this circuit provides treble as well as bass compensation. As the loudness is reduced, the amplitude of treble signal voltages is reduced more than bass, because of the shunting effect of C1 around R1 and C2 and R3 around all the components between step 3 and ground. Hence, there is a relative bass boost. On the other hand, there is also some treble boost, since C3 and C4 bypass high-frequency signals around R4, R5, R6, and R7, which attenuate the lower-frequency signals. The over-all characteristic is shown in Fig. 6.

Fig. 6-Frequency characteristics of Bogen DB20 loudness control circuit.
Since there are considerable differences, not only between the actual frequency compensation characteristics of various loudness controls but also between the instructions given by various manufacturers for the use of their controls, it might be useful to sum up briefly the principle involved and a simple method of using any loudnessvolume control combination. When any combination of sounds, such as a musical performance, is heard at one volume level and then again at a lower level, if the actual acoustical power of every note is reduced by the same ratio, on the second hearing there will seem to be an extra reduction in the volume of the high-frequency notes and a still greater reduction at low frequencies, compared to frequencies, between about 1,000 and 3;000 cycles. If a sound is reproduced at the same loudness level as it originally occurred, no compensation is re-
quired, but if it is reproduced at a lower level, there should be some bass and treble boost.
When a program is to be reproduced at its original loudness level, the loudness control should be set so as to give a flat frequency characteristic and the desired loudness of sound obtained by adjusting the uncompensated volume control. If it is desired to reduce the loudness of the reproduced sound compared to the original, this should be done with the compensated loudness control, leaving the volume control at the previous setting. (If we can properly judge from the published frequency characteristics of loudness controls, their designers assume that no one wishes to reproduce sound at a level higher than natural.)
Even if we do not actually know what the original level of the reproduced sound was, we can set the loudness and volume controls properly. Assuming that we have proper equalization for recording characteristic (in record reproduction) or for transmission characteristic (in FM reception) and that our amplifier is otherwise adjusted for a flat frequency responseif all this is true and the loudness control can be turned up or down with no apparent change in the balance between middle, high, and low frequencies, then the volume control is correctly set. (This, of course, assumes also that the loudness control-and the listener's ears -conform to the Fletcher-Munson average curves.

If the sound is deficient in treble and still more deficient in bass, turn the volume control up and the loudness control down. If there is excessive bass, and perhaps slightly excess treble also, compared to the middle register, turn the volume control down and the loudness control up.

Sideband cutting compensation

A few recent FM-AM tuners do not depend upon bandpass tuned circuits in their AM channels to avoid the loss of high audio frequencies. They simply allow the amplitudes of the various sidebands to be attenuated by various amounts in the r.f. and i.f. tuned circuits and then compensate after the detector with an audio filter.

The idea is not new. It was first suggested in the early $1930^{\prime} \mathrm{s}^{4}$ and analyzed and tested by several engineers around that time. The Robinson

Fig. 7-Sideband compensation circuit, Stromberg-Carlson SR-401 radio tuner.

Stenode, a receiver with a piezo-electric crystal i.f. filter and an audio amplifier having a gain approximately proportional to frequency, was the extreme extension of the idea.
The circuits described in the reference article used series combinations of resistance and inductance as audio amplifier loads. Current practice is to use resistance-capacitance filters between the detector and first audio amplifier. Stromberg-Carlson model SR-401 radio tuner uses the circuit of Fig. 7. Pilot has used a circuit similar to Fig. 8 in several tuners.

Fig. 8-Sideband compensation circuit in the Pilot model 821 FM-AM tuner.
Various possible defects of the general method were analyzed and disposed of in the article referred to. Presumably Stromberg-Carlson and Pilot find that their particular circuits give satisfactory results.

If the effects of sideband cutting in AM receivers can be counteracted by such a simple method, then why the emphasis all these years on complicated bandpass circuits for high-fidelity receivers?
This article has dealt with interesting circuits and components in current audio equipment. The principles involved and the results achieved are not new in the field of audio design. It is primarily the public interest in highfidelity equipment that is new; and with this interest the public is willing to pay more to receive this quality. Tone and loudness controls have appeared in a multitude of circuits during the development of radio, but it is only comparatively recently that the more finely engineered circuits have made a widespread appearance. The overall goal is true fidelity of reproduction. What was considered as high fidelity by most manufacturers until recently is now ordinary reproduction. With special compensation networks and highquality audio components we move continually closer to the ultimate, perfect fidelity.

[^2]
circuit shorts M

Voltage regulated screen

 and bias supplies improve efficiency and fidelityBY ROBERT F. SCOTT

AWELL-REGULATED sereenvoltage source is essential to minimum distortion and maximum output from class-AB push-pull pentode and beam-power audio amplifiers. The screen voltage must be stabilized to hold the plate dissipation at the proper level under all signal conditions. A voltage-regulated bias supply is desirable for good linearity, high output, and high efficiency, particularly in circuits which draw grid current over a part of the input signal cycle.

Fig. 1 shows the signal circuits of the Bogen model HO-125 125-watt booster amplifier. It may be driven by any amplifier that will develop 5 volts across the $500,000-\mathrm{hm}$ input resistor.

The 6SN7-GT screen-voltage regulator is connected across the 300 -volt screen supply lead. When the signal input is low, the screen current decreases. The 6SN7 voltage-regulator grid is connected to the 807 grid-bias line. As the input signal level varies, the 807 grid current and bias change, shifting the bias on the regulator tube so that its plate-current change is equal and opposite to that of the 807 screens. This maintains a constant load on the 300 -volt line so that the 807 screen voltage does not change.

Hartley 20-watt amplifier

A series-type voltage regulator (Fig. 2) is used in the Hartley 20 -watt amplifier. The plate of the 6 J 5 voltage regulator connects directly to the $400-$ volt B plus line. Its grid is tapped onto a B plus voltage divider between the 400 -volt line and ground. The divider consists of a $47,000-\mathrm{ohm}$ resistor in series with the plate-to-cathode resistances of a $6 J 7$ voltage amplifier and $6 J 5$ phase inverter in parallel.

Any changes in the supply voltage or load current cause the regulator-tube bias to change. This varies the plate-tocathode resistance in a direction which tends to stabilize the voltage developed at the 6 J 5 cathode.
The 10,000 -ohm potentiometer in the screen circuit balances the plate currents of the 807 's. The tubes are balanced by connecting a $10-\mathrm{ma}$ d.c. meter between the plates and adjusting the potentiometer so that the meter reads zero.

A grid bias regulator

The triode-connected push-pull 1614's in the Fisher model 50-A high-fidelity,

50 -watt amplifier are supplied with 42 volts of regulated bias. The driver, output, and bias circuits are shown in Fig. 3. Half of a $12 A U 7$ is used as a shunt-type voltage regulator in the bias supply. Bias voltage is obtained from a tap on the secondary of the power transformer. The 12AU7 control grid is supplied from a variable control in a bias voltage divider network.

This regulator circuit operates somewhat like the one in the Bogen HO-125 shown in Fig. 1. Any changes in the output of the bias rectifier or in the grid bias due to grid current, shift the bias on the $12 \mathrm{AU7}$ so that its plate current varies in a direction which holds the 1614 grids at the proper bias level. When the bias-control potentiometer is properly adjusted, the total 1614 cathode current is 120 ma and the 12AU7 grid and cathode are at minus 43 and 42 volts, respectively.

Altec Lansing voltage regulator

In most circuits using cold-cathode voltage-regulator tubes, the tube (or several in a series) is used as a bleeder to stabilize the voltage at a given point irs the circuit. In the Altec Lansing model A-333A amplifier, the voltage regulator tube 0A3 (VR75) is a part of a voltage divider which supplies the pre-amplifier-equalizer and the screens of
the 6L6-G power amplifier tubes. The circuit is shown in Fig. 4. The voltage divider consists of the 0A3 and the $100,000-$ ohm resistor in series between the 400 -volt B plus line and ground. The constant drop across the 0 A 3 reduces the voltage to 325 at its cathode. The 1,200 -ohm and 10,000 -ohm seriesdropping resistors and the 40 - and 20 $\mu \mathrm{f}$ capacitors provide additional filtering and drop the voltage to 320 and 235 for the 6 L 6 screens and the preamplifier.

Bogen bandwidth control

The Bogen model AM-901 AM tuner and the R-701 FM-AM tuner incorporate a novel switching arrangement for altering the curves of the i.f. and audio output circuits to provide normal 10 -ke response for high-fidelity AM reception or a cutoff at about 5 ke for narrowband reception.

The response-determining portions of the AM-901 tuner are shown in Fig. 5. The 6BE6 is the converter, the 6BA6 is the i.f. amplifier, and the 12 AT 7 is the diode detector and audio cathode follower. $S 1$ is a 6-circuit, 4-position function selector switch. Position 1 is off, 2 is PHONE, 3 is NARROWBAND AM, and 4 is WIDEBAND AM.

Sections S1-a and S1-b vary the response of the i.f. circuit. When set to WIDEBAND AM, the trimmers accoss the

Fig. 1-Diagram of the Bogen HO-125 amplifier. A regulated negative voltage biases the grids of the 807 tubes. It also provides bias for the driver tubes.

FIG. 3
Fig. 2-Output stage and regulated screen supply in the Hartley amplifier.

Fig. 3-The cathode-follower type driver, Williamson-type output stage, and the grid-bias regulator in the Fisher model 50-A 40-watt amplifier.

Fig. 4-Regulator for 6LG screen grids.

FIG. 5

Fig, 5-Partial schematic of the Bogen model AM-901 high-quality AM tuner. Fig. 6-Simplified circuit of the overcoupled i.f. stages used in the AM-901. Fig. 7--Sonocraft's novel tuning eye.

windings of the i.f. transformers (T1 and T2) are connected to ground through a . $01-\mu \mathrm{f}$ capacitor. The i.f. transformers are now converted to shunt-capacitance type overcoupled circuits which produce a broad, double-
humped response curve with sharp skirts.

Fig. 6 is the simplified circuits of one of the i.f. transformers when the selector switch is set for broad response. C1 and C2 represent the trimmers
across T 1 or T 2 . C3 corresponds to the $.01-\mu \mathrm{f}$ capacitor in series between C1 and C2 and ground. Note that the cold ends of the transformer windings are shown grounded in Fig. 6 while neither is grounded directly in Fig. 5. This does not affect the performance of the actual circuit because the plate and a.v.c. bypass capacitors (C1 and C2 in Fig. 5) effectively ground the lower ends of the windings for the i.f. signal.

Section S1-c of the selector switch varies the response of the audio signal at the output of the cathode follower. In the wideband position, L1 and C3 form a parallel-tuned 10 -kc heterodyne filter which traps out whistles and interference which occurs when adjacentchannel stations are received simultaneously. Throwing the switch to NARROWBAND AM converts the cathode follower output circuit to a modified M derived filter which begins to cut off at about 5 kc , thus eliminating a lot of the noise and monkey-chatter which may occur in localities where co-channel interference exists. The i.f. circuits are converted to conventional mu-tual-inductance types by shorting out the . 01 -uf capacitor when good selectivity is required.

The Blackout tuning indicator

Sonocraft's new FM tuner uses the novel Blackout tuning indicator shown in Fig. 7. The 6J6 operates as a bridgetype v.t.v.m. with a NE51 neon lamp connected between the plates in the place of the usual meter. The input of the 6J6 is direct-coupled to the hot cathode of the 6AL5 discriminator in the tuner.

When the tuner is tuned exactly to the carrier frequency, the voltages across discriminator load resistors R 1 and R2 are equal with opposite polarities so the net voltage between the discriminator cathodes is zero. When the receiver is detuned, its intermediate frequency shifts above or below the resonant frequency of the discriminator transformer. The voltages across $R 1$ and $R 2$ are now unequal, and the resultant voltage between the cathodes is either negative or positive, depending on the direction of detuning.
Since the most negative electrode of a neon lamp glows when connnected across a d.c. source, it can be used as a tuning indicator acioss the output of a discriminator.

When a d.c. voltage is applied to the input of the $6 J 6$, the plate currents are unbalanced and one plate swings in a negative direction while the other swings positive, depending on the polarity of the input voltage. Since the NE51 is connected between the plates of the 6J6, the most negative electrode glows. Thus, one plate of the neon lamp glows when the set is tuned above the carrier frequency and the other glows when the set is tuned below the carrier. When the set is tuned exactly on the carrier, the d.c. output from the discriminator is zero and neither plate glows.

END

EXPERMMENTAL COMMUNCCTION WTH LLCHT BEAMS

Light-beam communication, free from electrical disturbances, is highly appli-

cable for short-range work

T-HE transmitter on our cover this month is one of two distinct types of light-beam communications devices developed by the Yankee inventor Leslie Gould. (Regular readers will remember his Prismatone lightoperated organ in the April, 1947, issue, and the Sonicator ultrasonic radar printed in August, 1946, as well as earlier items on light-electronic music, FM phonograph pickups, and similar devices.)

The more efficient light modulator, says Gould, is the gate type shown in Fig. 1. It uses the motor of a PM speaker, somewhat in the fashion of earlier light-beam transmitters (RadioCraft, September, 1934). The difference is in the gate. It consists of two crossed triangular Polaroid wafers, as shown in the figure. The upper one is fixed to a frame built up on the speaker; the lower one is cemented to the voice coil. The cone is removed, the voice coil being held by the spider alone. The two pieces of Polaroid are mounted ahead of a lightproof partition, in the center of which a round hole is cut just behind the crossover point of the two Polaroid strips.

The voice coil of this modulator is attached to the output of an ordinary amplifier. Speech or music makes the lower vane move up and down, and the light-stopping action of the crossed Polaroid pieces modulates the light beam projected through the round hole. (As the lower vane moves up, it reduces the amount of light, and increases it as it moves down.)

While it is the most efficient of the transmitters described here, this equipment requires a complete transmitting apparatus, as indicated by Fig. 2. The light has to be concentrated by special lenses for best results. A range of several hundred feet has been attained in daylight, and would be greatly increased in darkness. The other two modulators are not as efficient, but can be used by placing them ahead of an ordinary car headlight or spotlight, a heliograph mirror, or any other source of strong light.

Two light modulators

One of these modulators uses the
radiating-vane system shown in the cover photo. One set of vanes is fixed; the other can rotate so as to cover or uncover the openings in the first set. See Fig. 3. An iron rod attached at right angles to the shaft runs down past the edge of the assembly and is terminated in a small iron ball (in some models, a rectangular pole-piece) suspended between the poles of a small permanent horseshoe magnet.

A coil of wire is wound around the rod just above the pole-piece, so that current in one direction will make it an N -, and in the other, an S-pole. A thin strip of spring bronze is adjusted with screws as shown in the figure, to center the pole-piece between the magnet poles and prevent it from striking either pole as it is attached and repelled when audio-frequency current passes through the coil. This attraction and repulsion rocks the moving vanes, increasing or decreasing the apertures and therefore the amount of light transmitted.
The other modulator consists of a number of aluminum slats-plus an iron and a bronze one-which form a square frame. The slats are held together by two aluminum rods which pass through holes in their ends, and are spaced on the rods with fiber washers, making slits through which light can pass.
The center slat is of thin phosphor bronze. It extends beyond the sides of the square and is attached to anglepieces bolted to the outside ring. The whole frame may now swing or pivot around this center. Fig. 4-a is a drawing of the assembly.
The bottom slat is of iron, and is wound with a coil of insulated wire (200 turns of No. 28 enameled in the one shown). About an inch ahead of its edge is placed a small Alnico magnet, as shown in Fig. 4-b. Several holes are drilled in the slat just beyond the magnet poles, confining most of the magnetic field set up by currents through the coil to the area within the field of the permanent magnet.

As alternating audio currents flow through the coil, the slat is alternately attracted and repelied by the magnet, swinging the bottom of the frame in and out (and the top in the opposite
direction). As the angle of the slats change, more or less of the beam of light passes through.

This arrangement has proved more efficient than the rotating one. Signals have been sent with it from a car to a fixed receiving station over a distance of more than 300 feet in daylight.

The receiver

The receiving equipment is simplicity itself. A phototube is mounted in a raintight cylinder, with a simple lens to concentrate the light on it. Its output is connected into any standard phototube amplifier circuit and then goes through a conventional audio amplifier. The first stage of a high-gain amplifier may be hooked up to take the phototube signal directly.

Construction

The original features of all these pieces of equipment are covered by patent applications, so no commercial use may be made of them, as yet. However, the experimenter may wish to imitate the apparatus in one of its forms, either to study light-beam transmission or for his own amusement. He will find construction simple. The modulator units have been built in several sizes and with individual variations. No dimensions or characteristics are particularly critical. Two of the units can be attached ahead of an ordinary automobile headlight and need no further light source. Any good audio amplifier will operate them.

Applications

Equipment of this type might find many uses. They are short-range communications units which require no license and can be used over longer distances than "phono-oscillator" equipment. They are highly directional (though his can be a disadvantage at times.) They can be used in areas where electrical disturbances make radio impractical, or where noise makes a loudspeaker system (straight sound transmission) useless. There are obvious milatary applications. The equipment is highly interesting to the experimenter, in any event.

END

Fig. 1, left-The gate-type modulator. As the voice coil moves the lower vane, it "crosses" a larger or smaller area of the upper one, cutting off light proportionately. Modul"tion is "negative." Fig. 2, below-The transmitter with light-gate modulator. A is the handle which moves mirror C down into the dotted-line position for sighting an image on ground glass B, or up out of the way for transmitting, D the hood around the ground glass. E the main lightproof case of the instrument, F a 3 -inch aperture, G a $41 / 2$-inch lens with 20 -inch focus, H the lamp in its housing, and I the modulator. A lens system may be made by adding a lens at F and means to vary the distance between it and lens G.

Fig. 1-Signal tracing with crystal probe shows dead stage as a horizontal line.

Fig. 2-Gain of 10 through a stage of i.f. Input is shown above, output below.

Fig. 3-Example of attenuator resonances and partial rectification of r.f. signal by vertical amplifier of oscilloscope.

Fig. 4-Patterns obtained from crystal probe and from overloaded oscilloscope.

Fig. $5-$ Diagram of probe signal circuits.

TV SIENAL TRACING

Fig. 6-Probe with moderately long ground lead is unsatisfactory at high frequencies.

Fig. 7-Probe circuit RC time constants.

Fig. 8-Schematic of balanced probe.

Fig. 9-Margin by which standing wave pattern fails to contact the zero reference line measures the loss in twin lead.

Fig. 10 - Crystal probe may rectify signal when testing near local TV station.

Fig. 11-Curvature of reference line due to 60 eycle pickup in crystal probe.

Fig. 12-Horizontal sweep leads shortened. Scope at generator end of line.

Fig. 13-Vibrating contacts short and un-short the vertical input of scope.

MANY technicians find it necessary to use a sweep signal when signal-tracing an i.f. amplifier in a TV receiver, because the available station signal is not strong enough to obtain sufficient vertical deflection on the scope screen when the early stages are under test.

Fig. 1 shows the pattern that is obtained on the scope screen when the i.f. stage under test is dead. A normally operating stage will usually show a gain of approximately 10 , as illustrated in Fig. 2.

Technician should take care to keep r.f. voltages out of scope input circuit

Due to unsuitable probes, or to im proper modes of testing, the technician is sometimes misled during signaltracing procedures, due to r.f. voltages entering the scope input circuit. Only demodulated voltages from the probe should be permitted to enter the vertical amplifier of the scope. As shown in Fig. 3, frequency discrimination at r.f. and spurious resonances lead to erratic and unpredictable screen patterns. Partial rectification of the high-frequency voltages which find their way into the vertical amplifier develops a pattern which has no practical value.

When sweep wave envelopes of i.f. signals on the scope screen are viewed by overloading the vertical amplifier with the signal under test, the pattern is highly distorted as compared with the pattern obtained when a suitable crystal probe is used, as illustrated in Fig. 4.

Unnecessary trouble sometime ensountered in i.f. signal tracing due to failure to provide good r.f. ground
 Suitable ground returns are of great

 importance in signal-tracing work, and much of the difficulty experienced by beginners is due to this cause alone. Fig. 5 clearly distinguishes between the r.f. and the a.f. circuits which are present in the probe arrangement. The ground lead to the chassis should always be kent very short. and the ground point should be made as near as possible to the signal take-off point in the i.f. amplifier circuit.This matter is of even greater concern when station frequencies are being tested. It is often necessary to dispense with the short ground lead that is provided with the probe, and to make the ground return directly to the shielded case of the probe.
While a long grounding route would not be of practical concern when a $10-$ to-1 or a 100 -to-1 probe is in use, the long ground route commonly leads to curve distortion, regeneration, or even
oscillation when utilized with a crystal probe in i.f. amplifier signal tracing.
The lengths of the ground leads provided with conventional service probes is shown in Fig. 6. Unless high-frequency r.f. circuits are under test, such ground leads can be used satisfactorily.

Ability of erystal probe to display modulation envelope on scope screen depends on time constant of input cable and the

 isolating resistorA crystal probe which is to be used for video-amplifier adjustment as well as for signal tracing must be able to display 60 -cycle square-wave modulation on the scope screen without appreciable distortion. As seen in Fig. 7, the limiting factor in the ability of a crystal probe to display a modulation envelope on the scope screen is usually determined by the time-constant of the scope-input circuit, $\left(\mathrm{C}_{\mathrm{e}}+\mathrm{C}_{n}\right)(\mathrm{R} 1+\mathrm{R} 2)$. The total input capacitance $\mathrm{C}_{\mathrm{e}}+\mathrm{C}_{\mathrm{w}}$ charges through R1 and discharges through R1 + R2. Unless this charging and discharging can take place with sufficient rapidity, there will be negative peak clipping of the waveform displayed on the scope screen. R1 must be large enough to prevent r.f. signal voltage from entering the scope circuits. The time-constant can be reduced by decreasing the value of C_{c}. The cable capacitance, $\mathrm{C}_{\text {c }}$, is usually much larger than the scope input capacitance C_{8}. In 1 time-constant interval, the cable can charge up to 63% of the peak value of a square wave, or, having been previously charged, will be able to discharge in 1 time-constant interval to 37% of the peak value of the initial charge.

Balanced crystal probe used to check standing-wave ratio (impedance match) of twin lead to antenna or receiver

A balanced crystal probe, as shown in Fig. 8 (or two single-ended conventional crystal probes), can be used to check a lead-in for flatness or impedance match. Typical patterns and the conditions responsible for the observed standing-wave ratios are shown in Fig. 9. To understand the operation of a doubled-ended probe, note that the two diodes do not conduct simultaneously. As far as the instantaneous lead-in voltages are concerned, when the input signal to one diode is positive, the input signal to the other is negative. These polarities alternate at the carrier frequency, and the diodes conduct alternately.

Standing-wave patterns are sometimes interfered with by TV station signals or 60 -cycle hum voltage, as
shown in Fig3. 10 and 11. Unless the operator recognizes the source of such distortion, he may be at a loss to interpret the pattern which he has obtained on the scope screen.
In Fig. 8, the scope and the sweep generator are located at opposite ends of the transmission line. That is, the sweep generator is located at the lefthand end of the lead, and the scope is connected (through the crystal probe) at the right-hand end of the lead. In this test, a pair of 150 -ohm resistors are connected in series to provide a 300 -ohm load with a center-tap. The center-tap is required in this test to provide a d.c. return path for the balanced crystal probe.

If the characteristic impedance of the line is 300 ohms, the 300 ohm load will cause a flat trace to appear on the scope screen, as shown in Fig. 10. If the characteristic impedance of the line is not 300 ohms, the $300-\mathrm{ohm}$ load will cause the trace to depart from flatness. Fig. 9 shows the behavior of a section of 300 -ohm ribbon line, when swept with various values of load resistance. The operator will understand that a length of lead 25 or 30 feet long should be used in this test, so that appreciable standing waves can be developed at representative TV signal frequencies. Otherwise, the scope must have very high gain to obtain satisfactory deflection.

Several other practical considerations must be observed. Since the scope and the sweep generator are located at opposite ends of the line which is being tested, there may be a problem of obtaining a horizontal sweep voltage from the generator for the scope. Although some service scopes provide a phasable horizontal sweep voltage which is built into the scope, many service scopes do not have this built-in sweep facility, but rely upon the phasable horizontal sweep voltage which is built into the sweep generator. In that case, test leads are run from the generator to the scope to provide a phasable horizontal sweep voltage.
Since these test leads would have to be 25 or 30 feet long to make a test of a 25 - or 30 -foot length of lead, other test setups may be found more convenient when using a scope without a built-in horizontal phasable sweep. The probe and scope can be connected at the generator end of the line, if desired, as shown in Fig. 12. In this case, the generator has an r.f. output cable which is terminated in a center-tapped load. This center point is connected to the ground system of the test setup, as shown; the load resistor R then does

Fig. 14-Result of unsuitable demodulator probe or poor testing conditions.

Fig. 15-Testing with dual crystal probes.

Fig. 16-Diagram of two conventional crystal probes used in balanced tests.
not need to be center-tapped, and the scope is conveniently swept from the generator, as indicated by the leads between them in Fig. 12. This arrangement can be applied conveniently, especially when the load R may represent a remote point such as an antenna, whose matrh to the lead-in is to be tested.

These tests mean little unless a zerovolt reference line is available in the pattern. There are two ways of obtaining a zero-volt reference line. The most convenient one is to use a sweep generator in which the return trace is converted automatically into a zero-volt reference. This is done by providing a built-in source of square-wave bias to the swept oscillator in the generator. If the technician must use a sweep generator which does not provide a zerovolt reference line in the pattern, any arrangement which rapidly shorts and unshorts the vertical input terminals of the scope will serve the same purpose, as shown in Fig. 13. The rate of vibration should be considerably greater than 60 cycles, but may be any convenient arbitrary rate. The vibrating contacts operate to make the input signal fall to zero many times during the progress of the trace, thus making the zero-volt reference level apparent as a dashed line. The average constructor will usually have little trouble devising a vibrator, if one is needed.

The generator characteristic may be linear or nonlinear. The technician must first determine this characteristic so he can apply a correction, if one is needed. To make the matter clearer, consider the case in which the length of line shown in Fig. 12 is reduced to zero. No effects of standing waves are then apparent in the pattern, because they are absent. The trace should then be reasonably flat, as seen in Fig. 10. Consider, however, the cases shown in Fig. 14 , in which the generator characteristics are not entirely flat. Such instances can arise in practice, due to
high harmonics in the generator output combined with probe resonances, for example. In other cases, the fundamental voltage from the generator may vary somewhat. In any case, a correction must be made.
If the technician finds that the display is nonlinear when the lead-in length is reduced to zero, as shown in Fig. 14, the best procedure is to use a grease pencil to indicate the shape of this display on the fare of the cathode-ray tube. The penciled curve becomes the reference curve, and is the curve that will then be obtained when a section of lead-in under test is properly terminated. Any deviations in waveshape from the shape of this penciled curve indicate that the section of lead-in is imnroperly terminated.

If it is desired to use a pair of conventional crystal probes, instead of a snecial balanced probe, the test setup will appear as shown in Fig. 15. Each of the conventional probes is merely substituting for the diodes shown in Fig. 12. The circuit arrangement used in the dual-probe arrangement is shown in Fig. 16.

Standino-wave pattern may nat tauch zero-volt reference line when termination is a short or an open

In Fig. 9, although the line termination is a short, or an open circuit, the standing-wave pattern seen on the scope screen when a sweep test is made may not quite tourh the zero-volt reference line. The standing-wave pattern will touch the zero-volt reference line only if there are no losses in the line. When the test frequency is increased, the line losses increase, and the stand-ing-wave pattern approaches the zerovolt reference line less closely for an open or a shorted termination. The amount by which the pattern fails to reach the zero-volt reference line is a measure of the loss in the line. END

FOLDED DIPOLE TYPE ANTENNAS CAN BE DE-ICED

One of our rural customers had persistent trouble with TV reception each time his TV lead-in became covered with ice. Since this happened too frequently for us to send a technician out to de-ice the transmission line, we made a de-icer for him.

We inserted an a.c. receptacle in series with one side of the 300 -ohm lead-in. A plug with its prongs shorted with a jumper is kept in this receptacle to complete the circuit when the antenna is operating properly. See Fig. 1. Note that this method operates only with folded-dipole type antennas.

The instructions we gave were: When reception fades because of ice on the antenna, disconnect the lead-in from the set, remove the shorted plug, and plug in an electric iron in its place; and then poke the lead-in ends into an a.c. receptacle for a few minutes. The current drawn by the iron generates enough heat to melt the ice. The de-
icing circuit is shown in Fig. 2. When the ice has melted, disconnect the iron,

reconnect the lead-in, and return the shorted plug to its normal position.
-Henry Josephs

Television is still televi-

sion. Only tuner undergoes
major changes for u.h.f.

BY KEN KLEIDON*

A continuous u.h.f. tuner. It is mounted directly over the v.h.f. tuner.

Fig. 1-With the exception of two units, u.h.f. and v.h.f. receivers are identical.

Fig. 2-Breakdown of the component parts of the u.h.f. section of a TV receiver. ОСТОВЕR, 1953

SINCE the 70 new television channels have been allocated by the Federal Communications Commission, numerous articles have been published on u.h.f. Many of these articles have confused and in some cases even frightened the average TV technician. U.h.f. is not the monster these publications have led us to believe. It is new and does present different and varied problems not found in v.h.f., but if observed from a practical standpoint, the differences between u.h.f. and v.h.f. are few.

The same transmission standards used for v.h.f. telecasting are also being used for the u.h.f. band. Therefore the only real difference between u.h.f. and v.h.f. is the station's carrier frequency. For this reason, the TV service technician need only observe the different effect caused by the increase in frequency. This increase necessitates new and different tuning methods (u.h.f. strip, converter, or tuner) to receive a u.h.f. station on a v.h.f. receiver. Every u.h.f. television receiver on the market at the present time is nothing more than a v.h.f. receiver with a u.h.f. tuning unit. The majority of circuits in a v.h.f. receiver remain unchanged for reception on u.h.f. Referring to Fig. 1, the low voltage, high voltage, horizontal deflection, vertical deflection, sync separator, video amplifier, sound section, and i.f. amplifier circuits do not change in any way. Even the v.h.f. tuner remains unchanged except for that portion which may be modified to incorporate a u.h.f. tuning device. Because of this, servicing techniques used for v.h.f. will closely parallel u.h.f. servicing.
The function of a u.h.f. tuning device is identical to that of a v.h.f. tuner in that it merely selects and converts the station's sound and picture carriers to an intermediate frequency. Observing the block diagran of Fig. 2, the signal picked up by the antenna is coupled to the preselector which selects the u.h.f. station's sound and picture carriers. The signal is coupled through the preselector to the crystal mixer.

[^3]

Fig. 3-Complete schematic of the Raytheon UHF-100 continuous u.h.f. tuner.

The signal generated by the oscillator is mixed with the incoming signal and produces the resulting difference frequency falling in the intermediate-frequency range (25 or 40 megacycles). The difference frequency is amplified by the pre-i.f. amplifier before being coupled to the i.f. amplifiers of the receiver. Other u.h.f. tuning devices, such as strips and converters, operate similarly. The only difference is that these methods produce a difference frequency which falls in the v.h.f. frequency range (usually channels 5 or 6), and the signal is then treated exactly like a v.h.f. signal by the v.h.f. tuner.

Since the only difference between u.h.f. and v.h.f. is the carrier frequencies, servicing either a u.h.f. or v.h.f. receiver will be similar except for the tuning units involved. A u.h.f. tuning unit is considerably different mechanically and electrically, due to the new design principles required for the most efficient operation at these ultra-high frequencies. Cavities or tuned lines may be employed in place of coils and capacitors, link coupling is used rather than coupling capacitors, and a crystal mixer is commonly used instead of a vacuum tube, as can be seen by referring to Fig. 3. This is the schematic diagram of Raytheon's single-conversion, continuous u.h.f. tuner. Mechanically, it mounts directly over the v.h.f. tuner in the receiver and is coupled by drive gears which tune both u.h.f. and v.h.f. with the same tuning knob. The tuner obtains its filament and plate-supply voltages from the TV chassis, and a switch selects the desired tuner for operation.

The u.h.f. tuner employs a double coaxial line r.f. cavity preselector. The coaxial line arrangement has the advantages of high selectivity, low insertion losses, uniform bandwidth, and good shielding against oscillator radiation. The coaxial cavity is basically a quarter-wave shorted tuned stub. The
electrical length of the cavities is varied by a ribbon attached to the dial cord and pulley arrangement. This is much like varying the length of a tuned stub, which would change the resonant length for various frequencies. The dial cord is of a special material which is not affected by temperature or moisture and is locked to the pulleys to eliminate slippage. Tracking screws are provided in the cavities to obtain uniform bandwidth and sensitivity. The tracking screws vary the capacitance between the ribbon and the cavity wall and thus vary the electrical length of the ribbon.

The oscillator tube is a 6AF4 and the oscillator is tuned with a quarter-wave shorted parallel-wire transmission line arrangement. It differs from the rif. cavities in that a shorting bar is used to vary the electrical length of the lines. This method provides very stable operation.
Inductive or link coupling transfers the signal between stages. The link coupling arrangement gives maximum selectivity and constant bandwidth over the entire u.h.f. band. The signal from the output coupling link is mixed and detected by a CK-710 crystal detector and then applied to the tuned input of the cascode amplifier. A 6 BK 7 tube is used as a cascode pre-i.f. amplifier which is tuned to a center frequency of 25 mc and has low noise and broad bandwidth. The signal is amplified by the cascode amplifier and then coupled to the i.f. amplifier section in the receiver through 10 inches of RG-62U coaxial cable.

These new circuit components differ only in application, since they function identically to their v.h.f. counterparts. There is nothing mysterious about their function or operation if they are considered from a practical standpoint.
The mechanical aspects of a u.h.f. tuning device will vary from one unit to another but should not offer a great deal of trouble when service is required.

Varied mechanical arrangements have been employed for v.h.f. tuning, dial stringing, control positions, picture tube mounting, etc., and have not proved difficult to the average service technician. Mechanically, servicing should not prove any more difficult than with the average v.h.f. tuner.

Special servicing techniques

The servicing techniques used when working with a v.h.f. tuner must be observed when attempting to service a u.h.f. unit. In dealing with ultra-high frequencies, stray capacitances and inductances have a much greater effect than with v.h.f. Much more care must be observed not to move or rearrange components or mechanical parts, as distributed capacitance or inductance may be changed and thereby offset the alignment. Also, when a part replacement is necessary, the same lead lengths must be maintained and the part must be replaced in the same physical location. Another important factor which sometimes has been overlooked in v.h.f. servicing is to obtain the exact part replacement. This is of the utmost importance in u.h.f. servicing. The manufacturer's replacement parts guide should be consulted and the recommended part obtained if at all possible.

Complete service information is contained in the manufacturers' u.h.f. service manuals. Carefully read and digest this information before attempting adjustments or replacement of components. The manuals usually contain a circuit description for a clearer understanding of the operation and function of the various components. Alignment instructions, or instructions to return the unit to the factory for repair or alignment, are included.

At present, u.h.f. is a relatively new field. Therefore, accurate test equipment necessary for r.f. and oscillator alignment is expensive and not readily available. For this reason, some manufacturers may recommend returning their units to the factory. However, a leading v.h.f. test equipment manufacturer has recently announced that their equipment has proved successful for u.h.f. alignment. This fact has been completely tested and found acceptable. If the v.h.f. sweep and r.f. generators operate on the fundamental throughout the entire range, the generated harmonics may be used as a u.h.f. alignment signal.

Alignment of Raytheon's u.h.f. tuner could not be classified as simple nor could any other u.h.f. tuning unit. However, due to its design and construction, alignment can be performed in the field if necessary. The cascode pre-i.f. amplifier can easily be realigned by connecting a $25-\mathrm{mc}$ unmodulated signal to the junction of L5 and C2 (Fig. 3), connecting a v.t.v.m. at the video detector output of the receiver, and adjusting the cascode plate and grid coils (see Fig. 4) for maximum v.t.v.m. reading. The two r.f. cavities may be aligned with respect to the oscillator by simply loosening the pulley-positioning screw
(Fig. 4) and rotating the r.f. drive pulleys for the sharpest and clearest picture while viewing a u.h.f. program. Complete tracking over the entire u.h.f. band requires accurate test equipment, as well as a detailed alignment procedure (which cannot be presented in this space). Therefore, unless both are available, adjustment of the r.f. tracking screws, oscillator trimmer screw, or shorting bar should not be attempted.

When attempting service of any tuning unit, many technicians fail to explore other circuits or conditions before suspecting the tuning device for trouble. If a "weak picture" condition, as illustrated in Fig. 5, appears on the face of the picture tube, it would be helpful to determine, if possible, if the same condition appears on the v.h.f. frequencies. If the same results are obtained on both u.h.f. and v.h.f., the cause of the trouble will generally be located in either the i.f. amplifier, detector, or video-amplifier circuits. If the condition appears only on u.h.f. and a normal picture is observed on v.h.f., the u.h.f. antenna installation should be checked as the possible source of trouble before suspecting the tuning unit.
If no picture appears, various circuit failures or external conditions may be the cause. As a fast check to localize the possible cause of the trouble, observe the face of the picture tube at both maximum and minimum contrast or picture-control settings. If no appreciable change is noticed between the two control settings, the trouble is usually in the i.f. or video-amplifier circuits. If at the maximum control setting an increase in snow is noticed, the trouble is most likely in the first i.f. amplifier or in the tuning device; it may be due to station failure; the set may be tuned to an off channel; or the
antenna may be disconnected or disabled.

Use of a u.h.f. converter as a method of checking a suspected defective tuning unit may prove very helpful. A u.h.f. converter can easily be substituted for the u.h.f. tuning device, whether it be a tuner, a channel strip, or another converter, to determine if the device is functioning normally. All that is necessary is to connect the u.h.f. antenna transmission line to the terminals provided and connect the output to the v.h.f. antenna terminals of the receiver. If the converter improves picture quality, the u.h.f. tuning device will require servicing.

The design of Raytheon's u.h.f. tuner enables servicing without removing it from the TV chassis. Convenient service check points have been provided, as illustrated in Figs. 3 and 4, for measuring the crystal current, oscillator plate voltage, and oscillator grid current. To determine whether the oscillator is functioning, both the oscillator plate voltage and grid current can be checked. With a voltmeter connected between the point indicated and ground or chassis, a reading of approximately 90 volts should be obtained if there are no defects in the voltage supply source or oscillator plate line. To measure the oscillator grid current, a Simpson model 260 multimeter, or equivalent, in the 100 -microampere scale position, should be placed across 22 -ohm resistor R 2 , with the positive meter lead to ground. A reading of 10 to 30 microamperes should be obtained if the oscillator is functioning normally. The crystal current (oscillator injection current) can be measured by placing a meter (type indicated above) on the 100 -microampere scale across 22 -ohm resistor R10, with the positive lead to ground. A reading of 5 to 40 microamperes

should be obtained if the oscillator and crystal are functioning normally.

When attempting to service a u.h.f. tuning unit, it may prove helpful to keep in mind that when trouble occurs in the oscillator section, the picture will generally disappear and when there is a defect in the r.f. or mixer stage a decrease in signal will usually result. When the oscillator section is suspected, the tube should be substituted, grid current, plate, and filament voltages should be checked, and all components in the circuit should be inspected. When the r.f. or mixer section is suspected, the circuits should be inspected, and tracking, alignment, and crystal current should be checked, and the crystal replaced if necessary. A defective crystal may cause varied effects in the picture and should not be overlooked as a possible source of trouble. Crystals are also the greatest source of noise generated in the majority of tuning units. Noise results in undesirable snow appearing in the picture, and crystal substitution to obtain an increase in picture quality may prove beneficial in some cases. Using an ohmmeter to check a crystal detector will prove to be an unreliable method. Direct substitution is the only positive check. The majority of crystal detectors in present u.h.f. tuning units are soldered into place, and overheating may cause damage. So take care when replacing a crystal. One of the most positive ways to avoid overheating of the crystal, is to hold the crystal with a pair of long nose pliers while soldering. The pliers will absorb most of the heat, preventing damage to the crystal.

Since the primary difference encountered in the u.h.f. receiver lies in the tuner, the service technician should thoroughly familiarize himself with the characteristics of u.h.f. There will be new tubes designed for u.h.f. tuners together with improved components. However, whatever we do the signal will not differ from the basic theory of v.h.f. television receivers.

Fig. 4 (Left)-Mechanical detail of the tuner. showing adjustments and check points.

Fig. 5 (Above)-The "weak-picture" condition.

THE large number of new homes built in the past few years have created many line-voltage problems. The power companies are improving their facilities, but the servicing technician will find many areas where the additional evening load drops the line voltage, of ten to 100 volts or lower. This often results in poor brilliancy, insufficient picture size, and occasionally sync instability because of the change in B voltages which occur. (Rarely these effects may be found in the daytime, as when a room air conditioner is used in an adjacent apartment.)

When a receiver is serviced or installed in the morning or afternoon, the line voltage may be normal. The technician may find that, if he adjusts the picture size to fill the mask at that time, it will shrink during the evening. Sometimes only the top or side of a picture may be affected, depending on the degree of change in sweep amplitude and the idling voltage through the yoke. A change in the latter can cause picture shift as well as general shrinkage

Fig. 1 shows the appearance of a screen in an area where line voltage dropped to 95 . The receiver was adjusted in the afternoon when the line voltage was 115 , at which time the controls were set to fill the mask properly. During mornings and afternoons the picture would be perfectly centered and would fill the mask, while during the evening the left and top margins of the picture appeared because of raster shift.

In this particular receiver a readjustment of the controls during the evening when the line voltage was low corrected the condition. The receiver was in an area where only three local stations could be received and signal strength was sufficient to maintain good synchronization. The brilliancy control, however, had to be operated at a higher than normal setting for proper picture illumination.
In weak-signal areas such compensation as adjusting the controls during low line voltage periods rarely solves the problem. Sync instability occurs. This often causes picture pulling and

[^4]shifting, with occasional loss of both vertical and horizontal synchronization.
In such instances the only solution is to install a transformer to maintain a constant voltage level or boost an abnormally low voltage. A typical one is the Sola model 7202. It is adequate for most 10 - to 16 -inch receivers and will maintain the voltage to the receiver constant for wide variations in line voltage.
Other devices which can be used are the Varitran units. Type V-O is designed for operating a receiver drawing current up to 2 amperes at 230 watts, and the output voltage is variable from 0 to 130. A 570 -watt unit is also available, type V-17.

The transformers described above are fairly expensive, ranging from $\$ 15$ to $\$ 35$. But they often provide the only means for correcting low line voltages or for preventing picture jitter and pulling during line voltage fluctuations. Where the condition is severe, the power company should be consulted with respect to their plans for improving the service and handling greater loads during peak hours.

Bleached picture

In a Transvision $A-4$ receiver the light portions of the picture turn white and appear bleached out when the brightness control is advanced. I have checked the control as well as the video i.f., detector, and amplitier tubes as well as resistors and capacitors. I would appreciate any suggestions you have for localizing the trouble. D. F., Welland, Ontario.
You mentioned that the light portions of the picture turn white and appear "bleached out." Since you have checked the parts and tubes of the video detector and amplifier stages, the trouble may be a defective picture tube. A characteristic sign of a defective picture tube is the silvery appearance of white objects when the brilliancy control is advanced.

First, try careful adjustment of the ion trap, to make sure it is positioned for maximum brilliancy. You did not mention whether or not you had sufficient contrast level. This should also be checked. Also make sure the ion trap magnet is not weak and is the
correct type for the tube. If these measures do not help, you could have the tube checked with a picture-tube tester, or try a new one.

Cascode tuner

I have installed a new Standard cascode tuner in an Adiniral 30A1. I must turn the volume control up higher than I did before to get the same volume as with the old tuner. I do not believe the picture gain is what it should be, and I get what looks like slight r.f. interference in the picture. I do not have 250 volts as called for on the tuner, having used a 22,000 -ohm resistor from the 350-volt line. I get the right voltage drop until I make the connection to the tuner, then the voltage drops to 225. What could cause these troubles? I have connected the tuner directly to the grid of the first picture i.f. amplifier, D. G. Bloomfield, Conn.

These faults you described are probably caused by the fact that the sound take-off coil in the original tuner has not been replaced in the new installation. The Standard Coil Products Company has a replacement coil available, part number XM-752. Refer to page 69 of the January, 1953 issue of RadioElectronics for full information on the use of this coil.

The 225 volts is sufficient, though you can obtain more by reducing the size of the series 22,000 -ohm resistor. There is always a drop of voltage when the load is applied.

Sweep angle

I have used an RCA 211D2 yoke in the conversion of a Raytheon C1104M receiver. I have changed the original 12LP4A tube to a 19EP4 rectangular type. I evidently have a mismatch because the left side of the picture is expanded and linearity is poor for both the vertical and horizontal sweep. I have been told that since I am using a 70-degree tube and a 70-degree yoke, I also need a 7o-degree transformer. Would this give me a better horizontal match and improve results? Please list the matching transformers for the yoke which I already have. L. T., Cicero, Ill.

The rectangular tubes do have a 70 degree deflection, as your friend told

Fig. 2-Screen just at pull-in point.

Fig. 3-The foldover trouble here is due to a defective vertical coupling capacitor.

+

Fig. 4-Rolling the picture slowly as a means of checking vertical linearity.
you. This refers to the angle which the beam must sweep to fill the picture mask properly. When such tubes are used, it is necessary to use a wideangle yoke and a transformer to match. If this isn't done, poor linearity, insufficient sweep, and other troubles occur.

For the RCA 211D2 yoke, the following represents the matching transformer:

RCA $224 \mathrm{T1}$ (for a 6 BQ 6 horiz. output tube)

RCA	230 T 1	6CD6
RCA	231 T 1	any
RCA	232 T 1	any

Definition

I have a few problems on a Bendix model 21 K 3 receiver. There is not appreciable difference in the picture when the focus control is adjusted and the picture does not seem sharp enough. There is also insufficient range in the contrast control. Another trouble I have is elimination of sync buzz when filmed commercials are on or during certain white portions in a movie. I would appreciate your advice regarding these matters. R. C., Chicago, Illinois

Adjust the focus control and watch the horizontal trace lines closely. If the focus control can give you sharply defined trace lines, the control is all right. If the picture detail is still lacking, tuner tracking and video i.f. alignment may be necessary.

Defects such as open peaking coils or off-value components may exist in the video amplifier sections. If the focus control cannot give a sharp line trace, check the resistive network associated with the focus control, and the focus control itself, for off-values.

Lack of sufficient contrast would indicate defective tubes or components from the tuner through the video i.f. stages to the picture tube. First check the tubes. If they are all right, tuner tracking and aligninent will be necessary.

Intercarrier buzz should be at a minimum with proper adjustment of the fine tuning control. In some filmed commercials, however, overmodulation occurs at the transmitter and nothing can be done to eliminate the buzz during such intervals.

Synchroguide check

As a television bench technician I find the most annoying service problein is that of horizontal drift. This is porticularly the case with pulse width a.f.c. systems. What are some checks and corrective procedures I can make to save time? J. R., Methuen, Mass.

With the pulse width sync system (Synchroguide), good stability is obtained only if the system is aligned properly according to the instructions given in the service notes for the receiver. Procedures include using a scope to make sure the broad and narrow peaks of the waveform at the junction of the coils are of the same amplitude.

A quick check to see whether or not the circuit requires alignment is to tuin the horizontal hold control to the extreme counterclockwise position. Turn the station selector off the channel and back again so that sync is lost. Now turn the hold control slowly clockwise and watch the diagonal bars decrease in number. When only two or three bars are left (sce Fig. 2) the picture should pull into sync upon a slight additional advance of the hold control in a clockwise direction. The picture should now remain in sync for about 90 degrees of additional rotation in the clockwise direction. If the sync range of the control is narrow, or if more or less bars are present than mentioned in the above check, the system should be completely realigned.

If drift or instability still persist, try several new tubes (some perform better than others). Finally, check voltages and parts. Some parts in the synchroguide circuit are temperature-compensated, and exact replacements should be used or drift will be worse.

Adjacent-channel interference

In a Mercury receiver there is severe adjacent channel interference between channels 3 and 4, as well as between 5 and 6. Is this an alignment problem or is it caused by a defective component? The receiver is used midway between Dallas (channel 4) and Wichita Falls (channel 3). E. C., Decatur, Texas.

When adjacent channel traps are tuned properly and the receiver is correctly aligned, adjacent-channel inter-
ference should not be present except from a strong local station when a weak cistant station is being received. Use your marker, sweep generator, and scope, and check iuner tracking as well as video i.f. alignment. Follow the step-by-step procedures given in the service notes for this receiver and you will be able to minimize this condition.

Oscillator slug

I have on the bench an RCA 241 with low volume on channels 2 and 4 and no sound on channel 7. When the station selector is turned a little past the place where it clicks in, reception is normal.

If the lead shield is removed from the local oscillator tube the volume also returns to normal. I've replaced all tubes in the tuner and somind section, and as well have talien volta!ge and resistance checks and found them normal. Auy help would be appreciated. F. H., Pontiac, Mich.

Turning the station selector slightly beyond normal changes tuning, while removing the oscillator shield alters the capacitance effects on the circuit. Both indicate off-resonance conditions in the local oscillator which can be corrected by adjustments of the local oscillator slug for the stations giving trouble. If this doesn't help, tuner tracking should be checked.

Bottom foldover

In a 1951 Tele-King receiver there is a foldover at the bottom after warmup. Adjustments of the vertical linearity and size controls do not help. What causes this? N. P., New York

This is usually caused by a defective coupling capacitor between the vertical oscillator and the vertical output tube. Linearity is also affected, as shown in Fig. 3. When the defective part has been replaced, readjust the vertical linearity and height controls when a station pattern is on the air, or with a cross-bar generator. A rough check of vertical linearity can be made by misadjusting the vertical hold control slightly until the picture rolls slowly. The blanking bar across the screen should not change in thickness as it reaches the top or bottom of the screen. (See Fig. 4)

TEEEVISION... it's a cinch

From the original "La Télévision? ... Mais c'est très simple!" Translated from the French by Fred Shunaman. All North American rights reserved. No extract may be printed without

By E. AISBERG

Sixth conversation, second half: Will learns about synchronization.

Hey, you-keep in step!

Will-And now isn't it about time to take the wraps off that mysterious "synchronization"?

Ken-I think so. You know already that the line and frame sweeps at the receiver have to keep in exact step with those at the transmitter. The beginning of each line (and each frame) have to be synchronized rigorously at transmitter and receiver.
Will-I can see that if they got out of step, you'd get a program something like a piece of music played by an orchestra with every instrument a few seconds behind the one beside it.

Ken-Well, let's not try to develop an optical analogy to your musical program. Actually, the transmitter sends out, along with the video signals, short signals (or pulses) to mark the end of each line, and a longer series of pulses to mark the end of each image.

WiLL-And it's these pulses you apply-through capacitor C1-to the thyratron grid? (See last month's installment for figure.)

Ken-Exactly. You have to arrange your circuits so these pulses are positive when they reach the grid-so that each one makes the grid less negative for a short instant.

WILL-I don't quite see what's going on. Does the tube amplify these pulses?
Ken-No, Will. You're just forgetting the effect of the grid on the anode breakdown voltage.
Will-Of course! When a positive pulse arrives, the grid becomes less negative, and the ionization voltage drops.
Ken-So the normal period of oscillation of the horizontal oscillator is made just a little longer than the time the transmitter takes to make one line (and the vertical oscillator's period a little longer than the time needed to make one field). In other words, the normal frequency is a little lower than the line or image frequency. Then, just before the anode voltage reaches the ionization point, a pulse comes and makes the grid less negative. So the tube discharges prematurely, triggered by the synchronizing pulse.

WILL-I think I have it O.K. Say a thyratron has a control ratio of 20 and a grid bias of 15 volts negative. The ionization voltage would then be 300 . If the synchronization pulse is 1 volt positive, the ionization voltage will be 280 instead of 300 volts, and the tube will discharge quicker than it would if there were no pulses.

KEN-You have it 100%.
Will_It wasn't so hard! I had a good example to go by. While I was taking swimming lessons on my vacation, the instructor synchronized the divers.
Ken-Huh??
WILL-When they got out to the end of the board and were ready to jump, most of them would hesitate. Then he'd just expedite them with a firm push on the back. And then they'd make beautiful parabolic curves!

Saturated diodes to pentodes

KEN-Speaking of curves, this business of getting a sawtooth wave by charging and discharging a capacitor is fine, except that the sawtooth we end up with isn't quite linearit has a curve to it. Now we've got to get back to the job of making that exponential curve as straight as possible.
Will-Can't we find some method of keeping the current that goes into capacitor C constant? Then the voltage would rise in exact proportion to time, and we'd have a linear sawtooth.

KEN-Maybe you could work out such a scheme. Can you figure out just how you'd limit the current?

WILL-You'd have to replace the charging resistor with something that wouldn't let more than a certain definite amount of current through. How about using a tube-or rather its plate-cathode resistance-for the job?

Ken-That would work, Will. For instance, you could use a diode (preferably a direct-heating type) working at saturation. All the electrons emitted by the filament reach the plate, and so any increase in plate voltage can't increase the current flow. You could regulate the amount of current flow within limits by adjusting the filament voltage.

Will-But why do you want a direct-heating diode?
KEN-Because a direct heater saturates much more definitely and sharply than an indirectly heated cathode. But if you don't like filament heaters, you can use an ordinary cathode-type pentode.

Will-Do you work it at saturation, too?
KEN-The term wouldn't be correct, but the result is the same. You know how the plate-voltage/plate-current family of curves of a pentode looks. For any screen voltage, the plate current rises with plate voltage up to a certain point, then changes very little as the plate voltage goes on up. If you work the pentode on that flat part of the curve, it would charge a capacitor at a constant-current rate. Take a look at this schematic. The pentode replaces the charging resistor R. The screen voltage is regulated with a potentiometer P in series with a resistor R 4 . C3 is a decoupling capacitor.

Will-These saturated diodes and constant curr nt pentodes remind me of the bed of that old Greek bandit who used to trim off travelers who were too long for it or stretch them out to size if they were shorter than the bed.

The art of using curves

Ken-You're talking about Procrustes. Yes, it is a sort of inflexible way of doing things. As a matter of fact; it's more common to straighten out the curves afterward, in the amplifier tube that we need anyway, to bring our sawtooth waves up to the amplitude we want.
Will-But how can an amplifier linearize a curved sawtooth wave?

KEN-It's easy. We make it distort a little, so it curves them in the opposite direction! Remember, Will, the most important thing in life is to be able to profit not only from the virtues and good points people or things may have, but also from their very faults and vices! What could be worse than a tube with such a crooked characteristic that it actually deforms the voltage it amplifies? But in this case that very fault becomes an advantage
Will-In other words, we have an amplifier tube with a curved grid-voltage/plate-current characteristic. And this curvature is exactly opposite to the curve of the sawtooth wave itself. If our sawtooth generator produces a wave that has a curve, all we have to do is feed this curved-or nonlinear-sawtooth into an amplifier that will bend the wave in the opposite direction. The result will be a practically straight sawtooth.
Ken-Here's a little drawing that will show that even better than you can describe it. The curves of the amplifier and those of the sawtooth oscillator may not balance each other exactly, but the compensation is good enough for any practical use
Will-Well, now that I've got all that down pretty pat, I suppose the moment has come to tell me that neither thyratron time-bases, constant-current tuhes, nor linearizing amplifiers were ever used in television?
Ken-Not quite, Will. All of them have been used at one time or another, and some are still being used. Even if they weren't, I wouldn't have wasted your time, because the thyratron time-base is almost universal in oscilloscopes, and you'll use them a lot if you expect to do much with television receivers. But I must admit that there is a much more common type of time-base, and I can tell you now that it really is used in most TV sets. But we'll have to put that off till our next conversation.
(TO BE CONTINUED)

uhf tv ANTENNAS

Current u.h.f. antennas combine the old with the new

By ABRAHAM HYMAN and JAMES C. SARAYIOTES*

BRINGING forth an antenna for television is much like bringing forth a baby into the world.
This brand new baby is bound to be bigger and bouncier than big brother v.h.f. Now that it no longer needs the warmth of the researchers' bassinette, it is casting off its blankets and starting to flex an unusually large pair of biceps for one so young.

Perhaps because they are still so youthful, u.h.f. signals are weaklings. They're quickly absorbed by trees, hills, and buildings. When u.h.f. waves aren't pulled in by obstructions they're bounced hither and thither. What happens then? Multipath signals are produced. These, in turn, hop aimlessly around town until they're lured in by an antenna. And, when multipathers are accepted, they spawn our old black sheep-the ghost.

Very few viewers want ghosts, unless they're watching a TV mish-mash of an old film like "Dracula." [Should they be urban residents, though, they have nothing to fear even if they use the simplest u.h.f. antenna of all-the much-heralded bowtie.]
The usefulness of large-area radiators for broad-banding is well known to the art. The triangular dipole is a development of the fundamental dipole for wide coverage in the u.h.f. spectrum.

Very simply constructed of two fanlike, hard-aluminum stampings, they are placed vertex-to-vertex with an included angle of 70°. Element lengths of 16 inches offer maximum gain. This combination results in a peak gain, at 750 mc , of 4 db over a thin dipole. The impedance of the triangular dipole is normally 300 ohms over the u.h.f. band.
A refinement of the simple bowtie dipole antenna is the bowtie backed up by a screen reflector. The change in antenna performance is striking. Gain climbs to well over 8 db at high points in the band, averaging out to about 6 db across the full u.h.f. spectrum. This gain occurs when a single-bay array is used.

[^5]Right - Bowtie antenna with corner reflector.

Below - Antenna coupler. Single transmission line can be used for wide range of frequencies.

The bowtie reflector may be stacked for improved vertical directivity and an additional 3 db gain. This is important for reducing ground reflections and improving fringe-area operation. The use of wire framing for the reflector along with the U-shaped insulator support minimizes weather effects.

Two other members of the u.h.f. family are the stacked-V and the rhombic. The rhombic can be considered as being two V -antennas in series, resist-ance-terminated at 470 ohms.

The rhombic antenna has a directional characteristic in the vertical plane. At some angle to the horizontal it has maximum pickup. This angle can be varied to some extent by varying its tilt angle, improving the over-all antenna gain. However, the vertical energy pickup may be out of phase with the horizontal pickup and may result
in ghosts. The vertical lobe structure varies radically in phase over the frequency spectrum and leads to further difficulty. The vertical effects may be reduced by stacking, which will give an additional increase in gain.

The longer elements not only lead to mechanical problems but also tend to narrow the horizontal pattern excessively. This subjects the installation to erratic signal variations during strong winds. A compromise value of 3 wavelengths at the low end of the band was used for the design figure. The optimum tilt angle for 3 wavelengths is 55°, which equals a length of 55 inches for each element. For lengths greater than 2 wavelengths the tilt angle is not critical over the band. A frequency range of 2 to 1 is feasible with a rhombic.

The rhombic has a narrow-beam horizontal directivity, and gains up to 9 db as its operating frequency climbs. Its elements have an optimum length of 55 inches and are made of $1 / 4$-inch outside-diameter hard-aluminum rods.

Both of these antennas are best put to use in regions where the u.h.f. station will be operating in the upper frequencies, since their highest gain is reached in those strata. Both must be considered broadband jobs, since reception on the lower frequencies is more than adequate and improves when the installation is set in a local area.

The single V is not particularly desirable because of its strong pickup in the vertical plane. On stacking, the V array improves immeasurably as far as vertical polarization is concerned.

Its horizontal directivity is not all that may be desired. As has been found with v.h.f. antennas tested on u.h.f., minor lobes in the horizontal plane are numerous and vary with frequency. On

Fig. 1-A simplified coupler circuit for one u.h.f. and two v.h.f. antennas.

Yagi antennas like this receive from six to ten channels on the u.h.f. band.
the high end of the u.h.f. band the lobes are numerous and large enough to make the antenna usable as an omnidirectional job.

Both the rhombic and V antennas have their own particular advantages. The stacked V provides a somewhat higher gain on the lower frequencies of about 6 db and increases fairly well linearly to about 12 db . The rhombic maintains an unvarying impedance over the entire band, making matching with the transmission line remarkably easy.

The opposite of the V antenna as far as lobe structure is concerned is the corner reflector which is most suitable where reflections are caused by objects in the vicinity. Gains of 8 to 12 db can be attained over the band with excellent directivity in both the horizontal and vertical sense.
Two flat reflecting sheets intersecting at an angle form the reflector. Corner angles either greater than or less than 90° can be used, although there are practical disadvantages to angles much smaller than 90°. To reduce the wind resistance of a solid reflector, a grid of closely spaced parallel wires may be used.
In general, the spacing between reflector conductors should be equal to or less than 0.1 wavelength. With a half wavelength driven element the length of the reflector's conductors should be equal to or greater than 0.6 wavelength. If the length is less than .016 wavelength, radiation to the sides and rear tends to increase, and the gain de-
creases. The triangular dipole was adapted for its broadband characteristics. The dipole was bent parallel to the reflectors, minimizing dipole-toreflector capacitance and reflector shielding of the collector.
The corner reflector does its job well, reaching and sometimes passing 12 db . This high gain is of great significance because increased radiation on higher frequencies, along with transmission line losses, can weaken signal strength if the gain is not high enough or if the installation is not fairly close to the transmitter.
Our old friend, the Yagi antenna, having become famous as a singlechannel antenna in v.h.f., might be expected to be just a single-channel worker on u.h.f. too. Don't you believe it! The Yagi pulls in as many as 15 channels on the ultra-highs. The bandwidth covered at the lower end of the spectrum is 6 channels, while the Yagi cut for the highest frequencies will receive channels 74 through 83 . Manufacturing firms are turning out u.h.f. Yagis with six extruded aluminum elements. One is a collector, four are directors, and one is a reflector.

The desirability of a combination u.h.f.-v.h.f. antenna based on the old reliable conical, resulted in further improvements on the conical and the u.h.f. triangular dipole. The new dipole for use with the conical has an angle of 35° and is cut to favor the upper portion of the u.h.f. spectrum. The nominal impedance remains 300 ohms over most of the band. However, the actual impedance is higher rather than lower as compared to that of the 70° triangular dipole. Since the power curve falls off at a much slower rate for higher impedance, a gain advantage is obtained over 80% of the u.h.f. band with this design. To permit coupling of the conical with the triangular dipole (or other u.h.f.
antennas), a coupling network was designed to permit connection and use of a single down-lead. It is designed to match a 300 -ohm balanced transmission line. High-Q silver-printed circuits minimize any reflections and insertion losses. An improved match is effected with the conical on the low u.h.f channels, which results in an increase in gain of 2 to 3 db . The schematic Fig. 1 is a simplified version of the network. The antenna coupler consists of a group of tuned circuits. Each circuit-being parallel-resonantwill offer a high impedance to the band of frequencies to which it is tuned, while offering an inductive or capacitive shunt to frequencies below or above its band. The Q of the printed circuits enables the antenna coupler to present a constant impedance of 300 ohms to the transmission line over the low u.h.f., high u.h.f., and v.h.f. bands. Since it is hermetically sealed, the antenna coupler maintains stable circuit constants despite constant exposure to the elements.

This design permits the use of two v.h.f. antennas. Therefore, two v.h.f. Yagis may be tied in with any 300 -ohm u.h.f. antenna. A second design makes provision for coupling one v.h.f. antenna over the entire band to the 300 ohm u.h.f. antenna. The printed-circuit technique was chosen over lumped-circuit parameters because it lends itself to uniformity in production. The reduction of undesirable stray and distributed capacitances permits the design of desirable inductances and capacitances over the v.h.f-u.h.f. range. The proper composition of the silver compound permits the design of the desired Q for proper bandwidth.

Looking down from the rooftops of America, u.h.f. is looking up! Technicians: There will be plenty of ultrahigh business, every bit of it new! END

U.h.f. Bowtie with corner reflector and stacked v.h.f. Yagi, using single downlead.

EUROPEAN

By A. V. J. MARTIN

TELEVISION is expanding rapidly in Europe. Regular daily programs of all kinds are broadcast in Great Britain, France, and Germany These include kinescope recordings and live pickups of plays, concerts, variety programs, sports, and special events.

Very few, if any, stations have the continuous program schedules found in the United States. In general, European TV schedules call for 20 to 40 hours of program per week, with transmissions only during certain hours in the eve-nings-and, in some cases, in the mornings and afternoons. For example, France has three regular daily transmissions, at $1: 00,6: 30$, and $8: 30 \mathrm{pm}$. Except for Great Britain (which has regular afternoon and evening programs, plus morning transmissions on Saturdays and Sundays) and Germany, the stations in most other European countries are on irregular or experimental schedules. This applies to Holland, Switzerland, Denmark, and Italy. Very little is known about Russian TV schedules, aside from the fact that at least three stations are on the air.

The standards in use differ widely, according to the country, and four types are in current use.

405 lines. Old low-definition standard used in Great Britain only- 25 frames; positive picture modulation; AM sound; vertical polarization.
441 lines. The old Paris transmitter. Now obsolete; will be working till 1958. Except for number of lines, is identical to British standard.
625 lines. So-called "European" stand-ard- 25 frames; otherwise identical with the U.S. Standard.
819 lines. High-definition French standard- 25 frames; positive picture modulation; AM sound; vertical polarization.
Several instances of exceptionally good dx have been recorded and certified by photographs. For example, the Paris and London programs have been received in Belgium, Holland, and Italy, and Russian telecasts have been picked up in France. American TV signals were reported seen on one occasion, but unfortunately this has not been verified, since it lasted for only a few minutes.

Belgium, as yet, has no stations of its own in operation, but plans to establish separate systems with different standards for the French- and Flemishspeaking sections of the country. Receivers in Belgium that are designed for the French 819 -line standard have been experiencing severe co-channel interference between Lille and Paris. These stations were assigned the same frequency in the belief that the distance between the two cities-approximately 150 miles-and the "official" service
coverage were enough to prevent any co-channel interference. But many points in Belgium (and France as well) are about the same distance from both cities, and exceptionally good transmission over the flat terrain has created the interference problem. (In the United States the same type of unforeseen co-channel interference was one of the factors that led to the television "freeze" and ensuing changes in several channel assignments.-Editor)

The accompanying table lists by countries the European stations now on the air. It includes both sound and picture transmitters, and has been arranged to show the lowest frequency first.

The first column gives the country and the second column gives the actual site of the transmitter. (In many cases this is a suburb of some large city, so the name may not be familiar except to a native.)
The third column gives the transmitter frequency, and the fourth column indicates whether this is the video (V) or sound (S) transmitter. Column five gives the transmitter power when known. (This is not the effective radi-
ated power, which may be considerably greater through the use of a high-gain antenna system.) The sixth column gives the number of picture lines only, since all European stations have the same 50 -field, 25 -frame standard.
For picture transmitters, column seven indicates whether single- or double-sideband transmission is used, with D for double-sideband, U for upper-sideband, and L for lower-sideband. The eighth column shows whether positive or negative picture-phase modulation is used. As all picture transmitters are amplitude-modulated, + indicates that an increase in carrier amplitude represents an increase in picture brightness, and a minus sign indicates the opposite. For the sound transmitters this column shows whether the modulation is AM or FM.
The ninth column shows the signal polarization: H for horizontal, and V for vertical.
The only city with two regularly scheduled stations is Paris, with the old 441 -line picture transmitter on 46 mc (sound on 42 mc), and the new 819 -line picture transmitter on 185.25 mc (sound on 174.1 mc). END

Country	Site	Frequency (mc)	Transmitter	$\begin{aligned} & \text { Power } \\ & \text { (} \mathrm{kw} \text {) } \end{aligned}$	Lines	Side. band	Modu lation	Polori. ration
DENMARK	Copenhagen	$\begin{aligned} & 63.25 \\ & 67.25 \end{aligned}$	$\begin{aligned} & \mathrm{y} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	625	D	$\overline{F M}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
france	Lille	$\begin{aligned} & 174.10 \\ & 185.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & v \end{aligned}$	0.75	819	1	$A M$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
	Paris	$\begin{aligned} & 42.00 \\ & 46.00 \end{aligned}$	$\begin{aligned} & 5 \\ & v \end{aligned}$	$\begin{aligned} & 5 \\ & 30 \end{aligned}$	44 !	0	$A M$	v
	Poris	$\begin{aligned} & 1.74 .10 \\ & 185.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & v \end{aligned}$	$\begin{aligned} & 0.75 \\ & 3 \end{aligned}$	819	1	$A M$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
germant	Berlin	$\begin{aligned} & 182.25 \\ & 187.75 \end{aligned}$	$\begin{aligned} & \hline v \\ & s \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & -.25 \end{aligned}$	625	U	$\overrightarrow{F M}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$
	Hamburg	$\begin{aligned} & 182.25 \\ & 187.75 \end{aligned}$	$\begin{aligned} & \mathbf{v} \\ & 5 \end{aligned}$	$\begin{array}{r} 10 \\ 3 \end{array}$	625	U	$\overline{F M}$	$\begin{aligned} & H \\ & H \\ & H \end{aligned}$
	Hanover	$\begin{array}{r} 196.25 \\ 201.75 \\ \hline \end{array}$	$\begin{gathered} v \\ s \end{gathered}$	$\begin{aligned} & 1 \\ & 0.25 \end{aligned}$	625	U	$\overline{F M}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
	Cologne	$\begin{aligned} & 195.25 \\ & 201.75 \end{aligned}$	$\begin{aligned} & v \\ & 5 \end{aligned}$	$\begin{aligned} & 1 \\ & 0.25 \end{aligned}$	625	U	FM	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
	Langenterg	$\begin{aligned} & 182.25 \\ & 187.75 \end{aligned}$	$\begin{aligned} & v \\ & s \end{aligned}$	$\begin{gathered} 10 \\ 3 \end{gathered}$	625	U	$\overline{F M}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
great britaln	Belfost (Northern Preland)	$\begin{array}{r} 41.50 \\ 45.00 \\ \hline \end{array}$	v^{5}	0.4	405	L	AM	$\begin{aligned} & \bar{v} \\ & v \\ & \hline \end{aligned}$
	Brightom	$\begin{aligned} & 53.25 \\ & 56.75 \end{aligned}$	$\stackrel{s}{v}$	0.4	405	1	$A M$	v
	Holme Moss	$\begin{aligned} & 48.25 \\ & 51.75 \end{aligned}$	$\begin{gathered} 5 \\ v \end{gathered}$	$\begin{aligned} & 12 \\ & 50 \end{aligned}$	405	1	$\overline{A M}$	v
	Kirk o Shotts (Scolland)	$\begin{aligned} & 51.25 \\ & 56.75 \end{aligned}$	$\begin{aligned} & \mathrm{s} \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & 12 \\ & 50 \end{aligned}$	405	L	$A M$	v
	tondon	$\begin{aligned} & 1.50 \\ & 45.00 \end{aligned}$	$\stackrel{s}{v}$	$\begin{aligned} & 3 \\ & 17 \end{aligned}$	405	D	$\begin{aligned} & A M \\ & + \end{aligned}$	v
	Newcastie	$\begin{array}{r} 63.25 \\ 66.75 \\ \hline \end{array}$	$\begin{gathered} \mathrm{s} \\ \mathrm{v} \end{gathered}$	0.4	405	L	$A M$	v
	Sutton Coldfield	$\begin{aligned} & 58.25 \\ & 6.75 \end{aligned}$	$\frac{5}{v}$	$\begin{aligned} & 12 \\ & 50 \end{aligned}$	405	1	$A M$	v_{v}
	Wenvoe	$\begin{aligned} & 63.25 \\ & 66.75 \end{aligned}$	$\begin{aligned} & 5 \\ & \mathrm{v} \end{aligned}$	$\begin{aligned} & 12 \\ & 50 \\ & \hline \end{aligned}$	405	L	$A M$	$\begin{aligned} & v \\ & v \\ & \hline \end{aligned}$
THE NETHERLANDS	Eindhoven	$\begin{array}{r} 47.75 \\ 53.75 \\ \hline \end{array}$	$\begin{aligned} & \hline v \\ & s \end{aligned}$		625	1	FM	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$
	Kootwilik	49.00	5				FM	H
	Lopik	$\begin{aligned} & 62.25 \\ & 67.75 \end{aligned}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{~s} \end{aligned}$		625	U	$\overline{F M}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
Italy	Turin	$\begin{aligned} & 83.25 \\ & 87.75 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 2.5 \\ & \hline \end{aligned}$	625	U	$\overline{F M}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{H} \\ & \hline \end{aligned}$
	Milon	$\begin{aligned} & 20: 25 \\ & 206.75 \end{aligned}$	$\begin{aligned} & V \\ & s \end{aligned}$	$\begin{aligned} & 5 \\ & 2.5 \end{aligned}$	625	\checkmark		
SWITZERLAND	Lousanne	$\begin{aligned} & 62.25 \\ & 67.75 \end{aligned}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{~s} \end{aligned}$		625	0	$\overline{F M}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$
U.S.S.R.	Kic\%	$\begin{aligned} & 77.25 \\ & 83.75 \end{aligned}$	$\begin{aligned} & \hline v \\ & s \end{aligned}$		625	U	$\overline{F M}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
	Leningrad	$\begin{array}{r} 59.25 \\ 65.75 \end{array}$	v		625	U	$\overline{F M}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
	Moseow	$\begin{aligned} & 49.75 \\ & 56.25 \end{aligned}$	$\begin{aligned} & v \\ & s \end{aligned}$		625	U	$\overline{F M}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
gugoslavia	Belgrode	$\begin{aligned} & 42.50 \\ & 47.00 \end{aligned}$	$\begin{aligned} & \hline V \\ & \mathrm{~s} \\ & \hline \end{aligned}$	i	625			

Here is an inexpensive salesman who can cover lots of territory fast. Every door is open to him.

By B. W. WELZ

FOR two cents you can buy a salesman at any postoffice who will bring your sales talk right into the customer's home. Your salesman is $M r$. Postal Card, and he is allowed through anybody's door, rich or poor. He is BIG BUSINESS in informal dress.
Don't make the mistake of selling him short because of his puny size. He can say a lot if he is properly handled. If you've never written an ad on a postcard, you'll be surprised at how much you can get on one. Mr. Postal Card is an inexpensive operator, too. If you don't want to pay printer's costs, all you need is a typewriter:
He puts your sales talk right under the customer's eyes. He has an unique advantage of his own, too. Ad writers say he can be "individually placed." Since this is what makes him so effective, let's see what it means.

Suppose a shop has a new shipment of 17 -inch TV sets. Say the boss has a file of all TV repairs marked with the screen sizes. He goes through the file, picks out the names of those who own 7 -, 10 -, and 12 -inch sets, and he writes an ad on Mr. Postal Card, beginning, "Your small-screen TV is worth money on a trade-in . . ."
See how a postal card can be placedright into the hands of those who would be most interested in buying!

Slanting the story

Now, it doesn't make too much difference whether Mr. Postal Card is printed in flashy colors or merely typewritten. He is only as effective as his

SELIING

 POWERMr. Postal Card can do general heavy work, too. Some stores keep mailing lists handy and send out postal cards regularly, listing new items or telling of monthly sales. This pays off in two ways: Besides boosting sales, it keeps the name of the business in front of those who buy.

Another advantage of postal cards is follow-up. If a product moves slowly you can give it a shove with a series of postal cards-a series that doesn't end until the product is sold. Lots of big businesses today owe their rise to persistent follow-ups. Anyone who was ever on their mailing lists will never forget the stream of postal cards he got.

Mr. Postal Card can sell your services, too. Let him tell why people should bring their repairs to you instead of to the next guy. Remember to make your best selling point very clear, whatever it is-experience, low cost, reputationmake an impression with it. And re-member-keep the buyer's view in mind, like the boss did with his TV sets. Convince people that your selling point is an advantage to them.

A postal card has lots of other uses It can announce store openings or enlargements, renew ties with old customers, sell slow-moving appliances, remind past-due accounts, etc.

Once again, write him right: have something to say; say it in your own words, but with the buyer's benefit in mind. And next time you plan to sell your services or anything else, get in a good two cents' worth: Let Mr. Postal Card do the selling for you. END

Emerson model 747, the "Pocket Radio."

Garod "Starlet," 4 tube superheterodyne

midget portalles and their PROBLEMS

The care and feeding of midget receivers. Standard routine makes servicing easy

By PAUL BOLLER

THE standard midget portable has some inherent limitations in sensitivity and tone quality due to its low cost, its compactness, and the materials used in its construction. It's biggest handicap, though, is service. The little thing gets the most abuse and the least attention. Only rental PA systems get worse treatment. Here are some of the hazards a midget has to meet:
Rough and improper handling. Few midgets survive more than one season without a cracked cabinet, loose hinges, or a missing handle. Where the set has no lid-operated shutoff, the owner often forgets about the set and leaves it on until the batteries are exhausted.

Corrosion. Few owners realize that a leaky battery is the midget's worst enemy. Corrosion damage is usually permanent. The tuning capacitor is

Phileo personal radio, model 650.
the most common victim of the leaking chemicals. Steel-sealed A batteries offer some protection against leakage, but this doesn't solve the problem completely.
Elements. A midget is used around the house, in the backyard, at the beach, on trips-under every conceivable physical condition. Near pools and on the beach, it is often splashed, operated by people with water dripping from their bodies. Sand also gets inside. Between water and sand, the set really takes a beating, especially the loudspeaker and the controls. The hot sun heats up black and other dark cabinets to a point where they get soft and distorted. After such an ordeal, the lid often can no longer be shut. In many cases insects crawl inside through the speaker grille and cause rattles

Motorola portable midget receiver.

Servicing midgets is a problem all right. The customer-especially in re-sorts-wants fast, if not immediate, service. There are at least twenty brands of midgets currently on the market, and it is remarkable how few parts are standardized. Surprisingly few parts are obtainable at local jobbers. Many have to be ordered from the distributor, often from out of town. This makes immediate service almost impossible in some cases.
Most midgets are designed for maximum compactness, and servicing convenience is completely forgotten by the manufacturer. So, to remove a bug that's established itself in front of the speaker cone-a simple matter as the customer thinks-you often have to remove a cabinet, unsolder a loop, then remove some almost inaccessible screws (almost invariably with special heads), All that just to lift off the front panel! The mere pulling of a knob can be a headache when you find out that the genius who serviced the set last glued

Motorola model 61L is very compact.

the knob to the shaft. It is almost impossible to clip a standard alligator clip to a tube-socket pin without shorting out something and blowing a couple of dollars worth of tubes. Not even the new types of clips-Klipzon for in-stance-are safe in this respect, although they are many times superior to alligators.

Comparing the cost of replacement parts with the initial cost of the equipment, we find that it is pretty high. Plastic cabinets seldom run below $\$ 3.50$, i.f.'s around $\$ 1.75$, tuning capacitors from $\$ 2.75$ up. Most midget tubes have higher list prices than the equivalent a.c.-d.c. types. But shop overhead and hourly wage is about the same whether the technician works on a $\$ 500 \mathrm{TV}$ set or a $\$ 19.95$ midget. This is hard to get across to some customers who think that midget knowledge is cheaper than other radio knowledge because the midget radio cost only half as much as a conventional table model. Any repair involving more than a mere tube or battery replacement will certainly present a higher ratio of service cost to original cost than a conventional a.c.d.c. set. But it is possible to get money out of midget service through rationalized service and a sound approach, although volume is essential.

The RCA "Yachtsman" 3-way portable.

Estimates

It is often difficult to make an accurate estimate on repair jobs in the case of a TV set or a good table-model radio-phonograph, but in the case of a midget radio a fair estimate can usually be made while the customer is waiting. This presents two advantages. For one thing, it is possible to call the customer's attention to a broken cabinet, a mushy speaker or the like, and it may well be that he is willing to pay the cost of replacing them. There is normally a fair profit on parts, and this sales possibility should not be overlooked. Especially if you're doing a large-volume business in midgets, profit per set can be considerably higher than in the case of straight servicing, where only the least possible is done to get the radio back in operation. The other advantage of an estimate is that it may save the customer embarrassment when he comes to pick up his set, as he won't have to discover that he is short a few cents. The majority of midget owners are young pcople, students and teen-agers who seldom carry much money with them.

Service procedure

Once the set is taken to the service bench, open it up and shake it to make sure there are no loose parts and hardware (not over the trash can). It is good to have compressed air available at the bench for removing dust, insects, sand, etc. I have built several com-pressed-air installations in my spare time, each for less than $\$ 25.00$, including compressor, air tank, hose, gauge, relief valve, etc. I was able to do this by using the motor and compressor assemblies of old refrigerators which I obtained for around $\$ 5.00$ apiece.

Done on a clean bench, blowing dirt out does a better job than sucking it out with a vacuum cleaner, because you
don't have to empty a messy dust bag to hunt for some little special screw that may have disappeared up the hose.

The next things to check are the battery connectors. They often have only a single strand of wire left on them. Proper resoldering insures a good job. Corrosion on any part of the chassis should be brushed or scraped off. The bare metal should be coated with a thin film of Lubriplate or the like to prevent further damage. After this give the tuning capacitor a few more squirts of air to make sure no metal dust or bristles from the brush are left in it.

Circuit trouble-shooting and repair are usually routine, and after having serviced a few dozen sets a remarliable regularity of troubles is noticeable. With three-way portables (Fig. 1) a common trouble is leakage between sections of multiple electrolytic capacitors. This trouble can have many different symptoms, from varying filament voltages to squeals. A nother problem is sudden loss of sensitivity due to poor soldering of Litz wire in the antenna circuit. Also most temperature- and humidity-induced troubles can be quite perturbing.

Once the set is playing again, but before checking the alignment, make the following tests:

Three-way sets. Make sure the selenium rectifier (or tube rectifier in bigger sets) delivers a healthy $B+$ even at low line voltages. Measure the filament voltage across the heater of the converter tube, maintaining a line voltage of around 100 to 105 . This filament voltage should be not less than 1.1 volts or the oscillator section may fail. A more conclusive test is to adjust the line to 105 volts, tune the set to a station around 600 kc , and let it play for about 15 minutes. If it does not cut out or stop playing altogether, you can assume that the rectifier and converter tuoe are all right.

Battery-only sets. Make the same filament-voltage and drop-out tests by using a nearly used-up A battery. A poor oscillator tube or changed oscillator grid resistor will show up in these tests. Abnormal filament voltages across one or more tubes in series hookups can stop you in your tracks if you are unfamiliar with the fact that some tubes change their filament resistance as they get old. Try a whole new set of tubes. Naturally there are many other causes of incorrect voltages at the filaments.

Rubber bands tied around microphonic tubes will greatly reduce the tendency to howl.

Fig. 2-Audio amplifier check point.
After the set has been on for a while, check the voltage at the grid of the second audio amplifier (point A in Fig, 2). A leaky coupling capacitor can completely upset the bias (measured from grid to filament) because of the high-value grid resistors usually found in midgets. First-audio plate-load resistors lange from 470,000 ohms to over 1 megohm, and grid-return resistors in the audio output stage from 1 to 10 megohms. It is clear that even a small leakage will raise havoc in these circuits.

Alignment

Because of the necessarily small antenna, signal pickup is generally poor. This increases the importance of proper

Fig. 3-Point A measures a.v.c. voltage.
alignment. The i.f. alignment can be done before the chassis is installed in the cabinet. Many i.f. slugs and trimmers cannot he reached with any conventional alignment tool, once the chassis is in place. A v.t.v.m. across the a.v.c. bus will give a much better indication of gain variations than will the human ear which has built-in a.v.c. The conventional method of connecting an output meter across the voice coil or the output transformer primary is almost useless, unless a very sensitive meter is used. This is because the a.v.c. has tendency to compensate for any gain increase obtained during alignment, unless the aligning signal is too
weak to produce any a.v.c. voltage. In normal use, the set is seldom tuned to such a weak signal, and a.v.c. bias does influence the response curve of a tuned amplifier. So by tuning the i.f.'s with a nearly normal signal input we do a better job because we have proper response at normal bias. A.v.c. voltages of minus 1.5 to minus 3 volts are normally found at point A in Fig. 3 with a 500 -microvolt signal applied to the converter grid. This is about the same reading as you would get when the set is tuned to a local medium-power station. This method of indication has another advantage: It can be silent. No more wide-open volume controls, with earsplitting 80 -percent modulation filling the room. An unmodulated signal can be used with just the same effect.

Once the set is back in the cabinet, give it an r.f. aligmment. On three-way sets do this with batteries in place (whether or not the customer will purchase a set of batteries) and using battery power. Working with line power will only introduce errors due to the line pickup. Besides, in many sets the capacitance of the batteries affects the loop tuning. Plugged in an outlet a couple of blocks from a 25 -kw station, any midget will play-even one that's way out of alignment-but out in the sticks, 60 miles from the nearest $1-k w$ transmitter-that's real playing. The kind of performance we will try to attain is the kind that advertises.

A good method of signal injection is to couple the r.f. to the set with a loop of about two turns of heavy wire, the loop around six inches in diameter, placed near the receiver. As the oscil-lator-trimmer setting is not usually affected by the position of the batteries and the antenna loop, special precautions are seldom needed when adjusting it. But the r.f. trimmer is very critical. The ideal way to adjust it is (with the batteries and receiver loop in normal position) through a hole in the cabinet.

Some sets have them. Naturally the ear will have to be used as the output indicator, as it's almost impossible to make connections to the speaker with the cabinet shut. In spite of the handicaps, an accurate adjustment can be made if a weak r.f. signal with low modulation is used. Listen to the hash, rather than to the modulation; it increases as the modulation decreases. Never place a hand or object very close to the receiver loop, nor should the latter be placed on a metal bench top. The r.f. alignment affects tracking, and thus selectivity and gain. All adjustments should be made at the frequencies recommended by the manufacturer.
The oscillator trimmer is usually set at frequencies from $1,500 \mathrm{kc}$ to 1,650 kc; some sets (RCA) have a padder which is set around 600 kc ; the r.f. trimmer is generally peaked somewhere from $1,200 \mathrm{kc}$ to $1,550 \mathrm{kc}$. Going back and forth between these adjustments and rocking the tuning capacitor on the r'f.-trinmer settings will give a very fine job of alignment.

Most of the precautions and practices described become routine after a certain amount of midget work, and many of the above tests take less time than the decision of whether or not to make them. It is good to stop and think, but stoppage because of indecision is nonproductive. It is possible to repair and align almost any midget portable (except intermittents) in 30 to 45 minutes, provided replacement parts are at a finger's reach. Any set taking more than an hour of a good technician's time can be considered a bad deal, a lemon. Routine is the most important part in productive and reliable midget service. Routine is possible because midget circuits are more or less conventional and standardized. Only a few different tube types are used, and in a short time one knows most of the base connections. Routine reduces cost by increasing production. END

[^6]

I SEND YOU 18 BIGKMTS

of Radio Television parts tnd equipment. Much of your training will be actual ecastruc-
ilon and experimenta:ion. .he kind of truly

NEW! NO OBLIGATION PLAN

You Have No Monthly Payment Contract to Sign Pay For Your Training as You Earn and Learn
You can get into Radio-Television, today's fastest growing big money opportunity field, in months instead of years! My completely new "package unit" training plan prepares ycu in as little as 10 months or even less! No monthly payment cortract to agn-thus NO RISK to you! This is America's finest, most complete, practical training-gets you ready to handle any practical job in the booming Radio-Television industry. Start your own profitable Radio-Television shop ... or accept a good pay during the jast 21 years-and stand ready to train you, even if you have no previous experience! Mail coupon and get all the facts-FFEE!

Valuable Equipment Included With Training
*The new Sprayberry "package" plan includes many big kits of genuine, professional Radio-Television equipment. You perform over 300 demonstrations, experiments and construction projects. You build a powerful 6-tube 2 -band radio set, multi-range test meter, signal generator, signal tracer, many other projects. All equipment and lessons are yours to keep . . . you have practically every thing you need to set up your own profitable Radio-Television service shop.

Earn Extra Money While You Learn!
All your 10 months of training is IN YOUR HOME in spare hours. Keep on with your present job anc income while learning. With each training "package" unit, you receive extra plans and "Business Builder" ideas for spare time Racio-Television jobs. New tele vision stations everywhere, open vast new opportunities for trained Radio-Televisior. Technicians-and those in training. If you expect to be in the armed forces later, there is no better freparation than practical Sprayberry Radio-Television training

SPRAYBERRY ACADEMY OF RADIO
 111 NORTH CANAL ST Dept. $20-\mathrm{B}$, Chicago 6, 1 ll

YOU BUILD
The Theleviston set and the powertul Buperhet radio recelver shown above. NADDiTiON to the other test units lack of Byace). Ail equipment I send you is
YOURS TO KEEP.

MAIL COUPON TODAY! NO OBLIGATION

I invite you to get all the facts-

 FREF: ․ 3 BIG RADIO-TELEVISION BOOKS want jou to have ALL the facts about my new 10 -MONTH Radio-Television Training -Wlthout cost! Rush coupon for my three blg Radio Thevision books: "How to Make Money in Radiolein PLUS an actual Eample Sprayberry Lesson-ALL FREE, No obligarion and no balesman will call. Mall crupon NoW!SPRAYBERRY ACADEMY OF RADIO, Dept. 20-B 111 North Canal St., Chicago 6, III.
Please rush to me all information on pour 10-MONTH Radio-Television Training Plan. I understand this does not obligate me and that no salesman will call upon me. Be sure to include 3 books FREE

Name
Age
\qquad

City

Another new, outstanding instrument design so typically characteristic of Heathkit operation in producing high quality instrument kits at the lowest possible price. A new, improved model Impedance Bridge kit featuring modern cabinet styling, with slanted panel for convenience of operation and interpretation of scales at a $\$ 10.00$ price reduction over the preceding model. Built-in adjustable phase shift oscillator and amplifier with all tubes of the battery operated. type completely eliminates warm-up time. The instrument is entifely AC line operated. No bothersome battery replacements.
The Heathkit IB-2 Impedance Bridge Kit actually represents four instruments in one compact unit. The Wheatstone Bridge for resistance measurements, the Capacity Comparison Bridge for capacity measurements, Maxwell Bridge for low Q, and Hay Bridge for high Q inductance measurements. Read $\mathrm{Q}, \mathrm{D}, \mathrm{DQ}$ all on one dial thereby eliminating possible confusion due to the incorrect dial reference or adjustment. Only one set of instrument terminals nec-
essary for any measurement function. Panel provisions provided for external generator use.

A newly designed two section CRL dial provides ten separate "units" switch settings with an accuracy of $.5 \%$. Fractions of units are read on a continuously variable calibrated wire-wound control. A special minimum capacity, shielded, balanced impedance matching transformer between the generator and the bridge. The correct impedance match is automatically switch selected to provide constant load operation of the generator circuit. The instrument uses $1 / 2 \%$ precision resistors and condensers in all measurement circuits.

The new Heathkit IB-2 provides outstanding design features not found in any other kit instrument. The single low price includes the power supply, gencrator, and amplifier stages. No need to purchase separate instrument accessorics in order to obtain the type of operarion desired.

Heathkit AUDIO WATTMETER KIT

MODEL AW-1
$\$ 295$.
SHIPPING WT. 6 LBS.

A new Heathkit design for the audio engineer, serious hi fi enthusiast, recording studio, or broadcast station; the Heathkit Audio Wattmeter Kit. This specialized instrument instantly indicates the output level of the equipment under test without requiring the use of external load resistors. All readings are taken directly from the calibrated scales of a $41 / 2^{\prime \prime}$ 200 microampere Simpson meter.
The Heathkit Audio Wattmeter features five full scale power measurement ranges from 5 milliwatts up to 50 watts with db ranges of -15 db to +48 db . The instrument has a power measurement rating of 25 watts continuous and 50 watts maximum for intermittent operation. Non-inductive resistance load impedances of 4 , 8. 16, and 600 ohms are provided through a panel impedance selector switch. Frequency effect is negligible from 10 cycles to 250 kc . A conventional VTVM circuit utilizes a 12 AU 7 twin triode tube. The meter bridge circuit uses four germanium diodes for good linearity.

With the Heathkit AW-1 desired information can be obtained instantly and conveniently without bothering with the irksome setups and calculations usually required. Useful for power curve measurements, frequency response checks, monitoring indicator, etc. Convenient calibration directly from 110 volt AC line source. This new instrument will help to supply the answers to your audio operating or power output problems.

Heathkit

LABORATORY GENERATOR KIT

```
MODEL LG-T
```

SHIP. WT. 16 LBS.

Another welcome
 new addition to the popular line of Heathkit instruments, the Heathkit Lab. oratory Generator. Specifically designed for flexibility of operation, accuracy and versatility beyond the performance level provided by the conventional service type gencrator. Frequency coverage of the Colpitts oscillator is 150 kc to 30 mc in five convenient ranges with provisions for internal or external modulation up to 50%, and .1 volt RF output throughout the frequency range. Panel mounted 200 microampere Simpson meter for RF "set reference level" to provide relative indication of RF output. Individually shielded oscillator and shielded variable and step attenuator provide flexible control of RF output.

The circuit features a 6AF4 high frequency oscillator, a 6AV5 amplifier with grid modulation, 12 AU7 400 cycle oscillator and modulator, OB2 voltage regulator tube, and a selenium rectifier for the transformer operated power supply. The smart professional instrument appearance and over-all flexibility of operation will prove a decided asset to any industrial or educational laboratory. The Heathkit Laboratory Generator sets a new level of operation, far superior to any instrument in this price classification.

CHECK THESE
Features

Freathbit OSCILLOSCOPE

 KITMODEL 0.9 \$5930

SHIPPING
WT. 28 LBS
New heavy duty shielded power transformer

Announcing the latest addition to a brilliant series of Heathkic Oscilloscopes, the new Model O-9. This outstanding instrument incorporates all of the features developed and proven in the production of well over 50,000 kits, in addition to a host of many new design features for truly outstanding performance. This new scope features a brand new (no surplus) commercially available supt cathode ray tube for line focusing, high intensity, and freedom from halation. The dep tube is the stand ard size for design and industrial laboratories, development engineers, and service men. The only size CR tube offering a wide range of types, formance lies in improved basic design and operating characteristics, and formance lies in improved
not in the use of larger $C R$ tubes
VERTICAL AMPLIFIER - New extended band width vertical amplifier with sensitivity of .025 volts per inch, down 3 db at 2 mc . down only $51 / 2 \mathrm{db}$ at 3 mc . Three step vertical input attenuator, quality ceramic variable capacitors for proper input compensation, provisions for calibraced 1 volt peak-to-pcak reference, with calibrated screen for direct reading of TV pulses.

HORIZONTAL AMPLE-
FIER - New input se.
lector switch provides choice of tori-
zontal input, 60 cycle sweet zonal input, 60 cycle sweep input, line sync, internal sync, and external sync. Expanded horizontal sweep produces sweep width several times the cathode ray tube diameter. New blanking ampinier for complete retrace banking and new phasing control.
POW Cult for really fine hairline focusing. New heavy duty power transformer and horizontal amififers for absolutely rock steady traces and complete freedom from bounce and jitter due to line variations.

The acid test of any oscilloscope operation is the ability to reproduce high frequency square waves and the new Heathkit O-9 will faithfully reproduce square waves un to 500 kc . This is the ideal all around, general purpose oscilloscope for educational and industrial use, radio and TV servicing, and any other type of work requiring the instantaneous reproduction and observation of actual wave forms and other electrical phenomena.

Heathkit Low CAPACITY PROBE KIT

Oscilloscope investigation of high frequency, high impedance, or broad bandwidth circuits encountered in television work requires the use of a low capacity probe to prevent loss of gain, distortion, or false service information. The Heathkit Low Capacity Probe features * a variable capacitor to provide the necessary degree of instrument impedance matching. New probe styling with bright polished aldminim housing and polystyrene probe ends.

NO. 337-B
\$350
SHIP, WT, 1 LB.

Heathkit

SCOPE DEMODULATOR

PROBE KIT

In applications stich as trouble shooting or aligning TV, RF, IF, and video stages, the frequency ranges encountered require demodeuhation of signals before oscilloscope presenttor Probe in polished aluminum housing will fulfill this function and readily prove its value as an oscilloscope service accessory. Detailed assembly sheet provided, including instructions for probe operation.

Heathkit VOLTAGE CALIBRATOR KIT

The Heathkit Voltage Calibrator provides a convenient mech od of making peak-to-peak volt age measurements with an oscilloscope by establishing a re lationship on a comparison basis between the amplitude of an unknown wave shape and the known output of the voltage calibrator. Peak-to-peak voltage values are read directly on the calibrated panel scales. To offset line voltage supply irregularities, the instrument features a voltage regulator tube. With the Heathkit Voltage Calibrator, it is possible to measure all types of complex wave forms within a voltage range of .01 to 100 volts peak-to-peak. A convenient "signal" position on the panel switch bypasses the calibrator completely and the signat is applied to the oscilloscope input thereby eliminating the necessity for transferring test leads.

Heathkit ELECTRONIC SWITCH KIT

The basic function of the Heathkit $\$.2$ Electronic Switch Kit is to permit simultaneous oscilloscope observation of two separate traces which can be either setarated or superimposed for individual study. A typical example would be observation of a signal as it appears at broth the input and output stages of an amplyfer. It will also serve as a square wave generator over the range of switching fregucncies often providing the necessary corm response information without incurring the expense of an additional instrument.

Continuously variable switching rates in three ranges from less than 10 cps to over 2,000 cps. Individual controls for each input channel and a positioning con-
troll. The five tube transformer operated circuit utilizes two 6 SJ7, two 6SN7, and one 6X5 rubes. Buy this kit and erijoy increased versatility of operation from your oscilloscope.

MODEL S-2
$\$ 23^{50}$
SHIP. WT. 11 LBS.

Features

New $11 / 2$ volt full scale low range 1,500 voli upper limit DC range

Increased accuracy through 50% greater scale coverage

Wigh impedance 11 megohm input
\checkmark Center scale zero adjust
\checkmark Polarity reversal switch

- 1% precision resistors

Clearly marked db scales

The beautiful Heathkit Model V-6 VTVM, the world's largest selling kit instrument, now offers many outstanding new features in addition to reaining all of the refinements developed and proven in the production of over 100,000 VTVM's. This is the basic measuring instrument for every branch of electronics. Easily meets all requirements for accuracy, stability, sensitivity, convenience of ranges, meter readability, and modern styling. It will accurately measure DC voltages, AC voltages, offers tremendous ohmmeter range coverage, and a complete db scale for a total of 35 meter ranges.
New $11 / 2$ volt full scale low range provides well over $21 / 4^{\prime \prime}$ of scale length per volt. Upper DC scale limit 1,500 volts. DC ranges $0-1.5,5,15,50,150,500,1,500$ volts full scale. AC ranges $0-1.5$, $5,15,50,150,500,1,500$ (1,000 volts maximum). Seven ohm-
meter ranges from . 1 ohm to 1,000 megohms. For added convenience a DC polarity reversing switch and a center scale zero adjustment for FM alignment.

The smartly styled, compact, sturdy, formed aluminum cabinet is finished in an attractive gray crackle exterior. The beautiful twocolor, durable, infra-red, baked enamel panel further adds to the over-all professional appearance.

Top quality components used throughout. 1% precision resistors - silver contact range and selector switches - selenium rectifier transformer operated power supply. Individual calibration on both AC and DC for maximum accuracy. DB scale printed in red for easy identification, all other scales a sharp, crisp black for easy reading. A variety of accessory probes shown on this page still add further to over-all instrument usefulness.

Heathkit 30,000 voit dc PROBE KIT

For TV service work or any similar application where the measurement of high DC voltage is required, the Heathkit Model 336 High Voltage Prole kit wil prove invaluable. A precision sleek, plastic probe body provides a multiplication factor of 100 on the DC ranges. of the Heathkit 11 megohm VTVM. The entire kit includes precision resistor, two-color plastic probe, tip connector spring, test lead, phone plug panel connector, and complete assembly instructions.

No. 338-B

$\$ 550$
SHIP. WT. 2 LBS.

Heathkit peak-to.peak PROBE KIT

Now read peak-to-peak voltages on the DC scales of the Heathkit 11 megohm VTVM Readings can be directy made from the VTVM scale withour involved calculations. Measurements over the frequency range of 5 kc to 5 mc . Use this probe to extend the usefulness of your VTVM in radio and TV service work. The Pcak-to-Pcak Probe Kit features the new polished aluminum housing with two-color pelystyrene probe ends. Detailed assembly sheet inciusing instructions for probe operation.

Feathkit RF PROBE KIT

The Heathkit RF Probe used in conjunction with any 11 megohm VTVM will permit RF measurements up to $250 \mathrm{mc}, \pm 10 \%$. A useful, convenient accessoty for those occasions when RF measurements ate desired. The RF probe body is housed in the new, smartly-styled polished aluminum probe body featuring two-color polystyrene probe ends and a low capacity flexible
shielded test lead. The kit is complere with all necessary material and a detailed assembly sheet as well as instructions for probe operation.

No. 309-B

SHIP. WT. 2 LBS.

Freatheict a c nacum nue VOLTMETER KIT
 MODEL AV-2 \$2950 SHIPPING WT. 5 LBS.
 The new Heathkit AC VTVM that makes possible those sensitive AC measurements required by laboratories, audio enthusi-

 asts, and experimenters. Especially useful for hum investigation, sensitive null detection, phono pick-up output measure-ments, making frequency response runs, gain measurements, ripple voltage checks, etc. Low level measurements are easy to make because of the complete voltage coverage of the instrument and the one knob operation.

The large 200 microampere Simpson meter has clearly marked and easy to read meter scales. Ten voltage ranges covering from .01 rms full scale to 300 volts rms full scale, with frequency response $\pm 1 \mathrm{db}$ from 20 cycles to 50,000 cycles. Instrument input impedance 1 megohm, ten db ranges from -52 db to +52 db . For stability and good linearity characteristics the meter bridge circuit features 4 germanium diodes. Attractive instrument styling, a companion piece for the popular Heathkit VTVM and the new AW-1 Audio Wattmeter.

CHECK THESE
 Features

20,000 ohms per valt DC sensitivity, 5,000 ohms per volt on AC

- Polarity reversal switch
- 1% precision multiplier resistors

ح 50 microampere $41 / 2^{\prime \prime}$ Simpson meter

- Meter ranges for service
convenience
New resistor ring-switch assembly
Total of $\mathbf{3 5}$ meter ranges
New Modern cabinet styling

MUWITMMETER KIT

 MODEL MM-1 $\$ 2650$ SHIPPING WT. 6 LBS.The most important Heathkit announcement of the year, the new 20,000 ohms pet volt Heathkit Multimeter, Model MM-1. The universal service measuring instrument, accurate, sensitive, portable, and completely independent of AC line supply. Particularly designed for service use incorporating many desirable features for the convenience of the service man. Full 20,000 ohms per volt sensitivity on DC ranges - 5,000 ohms per volt sensitivity on AC-polarity reversal switch, no bothersome transferring of test leads - 1% precision multiplier resistors — large $41 / 2^{\prime \prime}$ recessed non-glare 50 microampre Simpson meter - conveniently slanted control panel - recessed safety type banana jacks - standard universally available batteriesrugged practical sized cabinet with plastic carrying handle, and a total of 35 calibrated meter ranges.

RANGES

Voltage ranges selected entirely for service convenience. For example $11 / 2$ volt full scale low range for measuring portable radio filament voltages, bias voltages, etc., 150 volt full scale range for AC-DC service work, 500 volt full scale range for conventional transformer operated power supply systems. Complete voltage ranges $A C$ and $D C, 0-1.5-5-50-150-500-$ 1,500-5,000 volts. DC current ranges, 0-150 microamperes15 milliamperes- 150 milliamperes- 500 milliamperes- 15 amperes. Resistance measurements from .2 ohms to 20 meg .
ohms x I $\mathrm{x} 1,000 \times 10,000$.
DB coverage from -10 db to +65 db .

CONSTRUCTION

Entirely new design permits assembly, mounting and wiring of precision resistors on a ring-switch assembly unit. The major portion of instrument wiring is completed before mounting the ring-switch assembly to the panel. No calibration procedure is required, all precision resistors readily accessible in event of replacement.

CABINET

Strikingly modern cabinet styling featuring two piece construction, durable black Bakelite cabinet, with easy to read panel designations. Cabinet size $51 / 2^{\prime \prime}$ wide $\times 4^{\prime \prime}$ deep $\times 71 / 2^{\prime \prime}$ high. Good cabinet physical stability when operated in vertical position.
The Heathkit MM-1 represents a terrific instrument value for a high quality 20,000 ohms per volt unit using all 1% deposited carbon type precision resistors. Here is quality, performance, functional design, and attractive appearance, all combined in one low priced package.

Heathkit BATTERY TESTER KIT

MODEL BT-1
$\$ 85$.
SHIP. Wr. 2 LBS.

The Heathkit Battery Tester measures all types of dry batteries between $11 / 2$ volts and 150 volts under actual load conditions. Readings are made directly on a three color Good-Weak-Replace scale. Operation is extremely simple and merely requires that the test leads be connected to the battery under test. Only one control to adjust in addition to a panel switch for "A" or "B" battery types. The Heathkit Battery Tester features compact assembly, accurate meter movement, and a three deck wire-wound control, all mounted in a portable rugged plastic cabinet. Checks portable radio batteries, hearing aid batteries, lantern batteries, etc.

Heathkit HANDITESTER KIT

MODEL M-1

SHIPPING WI.
3 LBS.

The Heathkit Model M-1 Handitester readily fulfills major requirements for a compact, portable volt ohm milliammeter. Despite its compact size, the Handitester is packed with every desirable feature required in an instrument of this type. AC or DC voltage ranges full scale, $0-10-30$ - $300-1,000-5,000$ volts. Two ohmmeter ranges, $0-3,000$ and $0-300,000$. Two DC current measurement ranges, $0-10$ milliDC current measurement ranges, 0 -10 milli-
amperes and $0-100$ milliamperes. The instruamperes and $0-100$ milliamperes. The instru-
ment uses a Simpson 400 microampere meter movement, which is shunted with resistors to provide a uniform 1 milliampere load on both AC and DC ranges. Special type, easily accessible, battery mounting bracket - 1% deposited carbon type precision resistors - hearing aid type ohms adjust control. The Handitester is type ohms adjust control. The Handitester is
easily assembled from complete instructions and pictorial diagrams. Necessary test leads are included in the price of this popular kit.

Here is the new Heathkit Battery Eliminator necessary for modern, up-to-date operation of your service shop. The Heathkit Model BE-4 furnishes either 6 volts or 12 volts output which can be selected at the flick of a panel switch. Use the $\mathrm{BE}-4$ to service the new 12 volt car radios in addition to the conventional 6 volt radios.

This new Battery Eliminator provides two continuously variable output ranges, $0-8$ volts DC at 10 amperes continuously, or 15 amperes maximum intermittent; 0.16 volts $D C$ at 5 amperes continuously or 7.5 amperes maximum intermittent. The output voltage is clean and well filtered as the circuit uses two $10,000 \mathrm{mf}$ condensers. The continuously variable voltage output feature is a definite aid in determining the starting point of vibrators, the voltage operating range of oscillator circuits, etc. Panel mounted meters constantly monitor voltage and cur-
rent output and will quickly indicate the presence of a major circuit fault in the equipment under test. The power transformer primary winding is fuse protected and for additional safety an automatic relay of the self-resetting type is incorporated in the DC output circuit. The heavy duty rectifier is a split type 18 plate magnesium copper sulfide unit used either as a full wave rectitier or voltage doubler according to the position of the panel range switch.

Here is the ideal battery eliminator for all of your service problems and as an additional feature, it can also be used as a battery charger. Another new application for the Heathkit Battery Eliminator is a variable source of DC filament supply in audio development and research. More than adequate variable voltage and current range for normal applications.

Heathkit VIBRATOR TESTER KIT

Your repair time is valuable and service use of the Heathkit Vibrator Tester will save you many hours of work. This tester will instantly tell you the condition of the vibrator being checked. Checks vibrators for proper starting and the easy to read meter indicates quality of output on a large Bad-? Good scale. The Heathkit VT-1 checks both interrupter and kit Trectifier types of vibrators. Five different
self rest sockets for checking hundreds of vibrator types.

The Heathkit Vibrator Tester operates from any battery eliminator capable of delivering continuously variable voltage from 4 to 6 voles DC at 4 amperes. The new Hearhkit Model BE-4 Battery Eliminator would be an ideal source of supply.

MODEL VT-I
$\$ 1 / 50$
SHIPPING Wr. 6 LBS.

NEW Heathkit VARIABLE ISOLATION TRANSFORMER KIT

The new Heathkit Isolation Transformer Kit provides line isolation for AC-DC radios (not an auto transformer), thereby eliminating shock hazard, hum problems, alignment difficulties, etc. The outpur voltage is variable from 90 to 130 volts AC and is constantly monitored by a panel mounted AC volt meter. Use it to increase AC supply voltage in order to induce breakdown of faulty components in circuits thereby saving service time. Use it also to simulate vary ing line voltage conditions and to determine the line voltage level at which oscillator circuits cease functioning, particularly in three-way portable radios. Rated at 100 watts continuous operation and up to 200 watts maximum intermittent operation. A useful radio and TV service tool.

MODEL IT-I $5 \longdiv { 6 0 }$
SHIP. WT. 9 LBS.

Heathkit
 BINDINGPOST

Binding post kit now available so that standardization of all instrument connectors is possible. This new, five-way binding post will accommodate an alligator clip, banana plug, test lead pin, spade lug, or hook-up wire. Sold in units of 20 binding post assemblies. Each assembly includes binding post, flat and shoulder fiber washers, solder lug, and nut. 120 pieces in all. Kit $362, \$ 4.00$.

\#eathkit TECHNICAL

 APPLICATION BULLETINSAn exclusive Heathkir service. Technical application bulletins prepared by recognized instrument authorities outlining various combinations of instrument applications: Available now with 40 four-page illustrated bulletins and an attractive fexible loose-leaf binder. Only $\boldsymbol{\$ 2 . 0 0}$. (No c.o.d. on this item, please.)

check these Features

\checkmark INCREDUCTOR controllable inductor sweep

- TV and IF sweep deviation $12-30 \mathrm{mc}$

V 4 me- 220 me continuous frequency coverage

- Oscillator operation entirely on fundamentals

\checkmark
Output in excess of 100,000 microvolts

- Automatic amplitude circuit
- Voltage regulation
\checkmark simplified operation

New THeatheit TV ALIGNMENT GENERATOR K I T MODEL TS-3 $\$ 4450$

 SHIPPING WEIGHT 18 POUNDS

Proudly announcing an entirely new, advanced model TV and FM Sweep Generator, the Heathkit Model TS-3. This new design provides features and combinations of functions not found in any other service type instrument. Every design consideration has been given to the requirements of the TV service man to provide a flexible, variable sweep source with more than adequate RF output and complete frequency coverage throughout the TV and FM spectrum.

The frequency range of the TS-3 is from 4 mc to 220 mc in four switch selected ranges. All frequency ranges are overlapping for complete coverage. A particularly important feature of the instrument is that the oscillator operates entirely on fundamentals, thereby providing complete freedom from spurious oscillation and parasitics normally encountered in beat frequency type oscillators. This circuity assures a much higher total RI output level and simplifics attenuation problems.

The new TS-3 features an entirely new principle of sweep operation. Sweep action is entirely electronic with no moving parts or electro-mechanical devices so commonly used. The heart of the sweep system is a newly-developed INCREDUCTOR controllable inductor. With this system, the value of inductance of each oscil.
lator coil is electrically varied with an AC control current, and the inductance variation is achieved by a change in the magnetic state of the core on which the oscillator coils are wound. This system provides a sweep deviation of not less than 12 mc on all TV frequencies, and up to a maximum of 30 mc on TV IF frequencies. The high RF output level throughout the instrument frequency range overcomes the most common complaint of the older type sweep generators. A new, automatic amplitude control circuit maintains the output level flat to $\pm 2 \mathrm{db}$ throughout the instrument range. For convenience of operation a low impedance 50 ohm output is used.
Operation of the instrument has been simplified through the reduction of panel controls and separate panel terminals provide for external syachronization if desired. The circuit uses \perp voltage regulator tube to maintain stable instrument operation. A built-in variable oscillator marker further adds to flexibility of instrument operation. Provisions are also made for the use of an external marker, such as your service type signal generator, if desired. Use the Heatlkit TS-3 for rapil, accurate TV alignment work, and let it help you solve those time consuming, irksome problems so frequently encountered

new Heathkit SIGNAL GENERATOR KIT

MODEL SG-8
$\$ 1950$
SHIPPING WEIGHT 8 POUNDS

Announcing the new Heathkit Model SG-8 service type Signal Generator, in. corporating many design features not usually tound in an inserument in this price range. The RF output is from 160 kc to 100 mc in five ranges, all on fundamentals, with useful harmonics up to 200 mc . The RF output level is in excess of 100,000 microvolts throughout the frequency range.
The oscillator circuit consists of a 12AT7 twin triode tube. One half is used as a Colpitts oscillator, and the other half as a cathode follower output which acts as a buffer between the oscillator and external load. This circuity eliminates oscillator frequency shift usually caused by external circuit loading.
All coils are factory wound and adjusted, thereby completely eliminating the need for calibration and the use of additional calibrating equipment. The stable low impedance output features a step and variable attenuator for complete control of RF level. A 6C4 triode acts as a 400 cycle sine wave oscillator and a panel switching system permits a choice of either external or internal modulation.
The transformer operated circuit is easy to assemble, requires no calibration, and meets every service requirement for an adjustable level variable frequency signal source, either modulated or un-modulated.

new Heathkit BAR GENERATOR KIT

MODEL BG-I \$1450

SHIPPING WEIGHT

 6 POUNDSThe Heathkit BG-1 Bar Generator represents another welcome addition to the fast growing line of popular Heathkits. The station transmitted test pattern is rapidly disappearing, and the bar generator is the logical answer to the TV service man's problem in obtaining quick, accurate adjustment information without waiting for test patterns.

The Heathkit BG-1 produces a scries of horizontal or vertical bars on a TV screen. Since these bars are equally spaced, they will quickl' indicate picture linearity of the receiver under test. Panel switch provides "stand-by position" - "horizontal position" "vertical position." The oscillator unir utilizes a 12AT7 twin triode for the RF oscillator and video carrier frequencies. A neon relaxation oscillator provides low frequency for vertical linearity tests. The instrument will not only produce bar patterns but will also provide an indication of horizontal and vertical sync circuit stability, as well as overall picture size.

Instrument operation is extremely simple, and merely requires connection to the TV receiver antenna terminal. The unit is transformer operated for safety when used in conjunction with universal or transformerless type TV circuits.

CHECK THESE

new Features

Simplified harness wiring
- Improved, smooth, anti-backlash roll chart action

ments, simplified wiring, new roll chart drive and illumination of roll chart. The instrument is primarily designed for the convenience of the radio and TV service man and will check the operating quality of tubes commonly encountered in this type of work. Test set-up procedure is simplified, rapid, and flexible. Panel sockets accommodate 4, 5, 6, and 7 pin tubes, octal and loctal, 7 and 9 pin miniatures, 5 pin Hytron and a blank socker for new tubes. Built-in neon short indicator, individual three-position lever switch for each tube element, spring return test switch, 14 filament voltage ranges, and line set control to compensate for supply voltage variations, all represent important design features of the TC-2. Results of tube tests are read directly from a large $41 / 2^{\prime \prime}$ Simpson three-color meter, calibrated in terms of Bad-?-Good. Information that your customer can readily understand. Checks emission, shorted elements, open elements, and continuity.

The use of closer tolerance resistors in critical circuits assures correct test information and eliminates the possibility of inaccurate test interpretation. Improvement has been made in the mechanical roll chart drive system, completely eliminating diagonal running, erratic operation, and backlash. The thumb wheel gear driven action is smooth, positive, and free running. As an additional feature, the roll chart is illuminated for easier reading, particularly when the tube checker is used on radio or TV home service calls.

Wiring procedure has been simplified through the extended use of multicable, color coded wires, providing a harness type installation between tube sockets and lever switches. This procedure insures standard assembly and imparts that "factory built" appearance to instrument construction. Completely detailed information is furnished in the new step-by-step construction manual, regarding the ser-up procedure for testing of new or unlisted tube types. No delay necessary for release of factory data.

The new Heathkit Tube Checker will prove its value in building service prestige through usefulness - simplified operation-attractive professional appearance. Don't overlook the fact that the kit price represents a savings of $\$ 40.00$ to $\$ 50.00$ over the price of a comparable commercially built instrument. At this low price, no service man need be without the advantages offered by the Heathkit Tube Checker.

The portable model is sup-
plied with a strikingly arlin impregnated, fabric covering with a contrasting gray on the inside cover. Detachable cover, brass-plated hardware, sturdy plastic handle help to impart a truly professional appearance to the instrument.
PORTABLE TUBE CHECKER CABINET as described above will fit all earlier Heathkit TC-I Tube Checkers. Shipping weight 7 lbs. Cabinet only, $91-8, \$ 7.50$.

\#eathkit tv picture tube
TEST ADAPTER
The Heathkit TV Picrure Tube Test Adapter used with the Heath. Test Adapter used with the Heathkit Tube Checker will quickly check
for emission, shorts, etc. and de-
No. 355 \$ 50 for emission, shorts, etc. and de-
termine pircure rube quality. Contermine picture tube quality. Con-
sists of standard 12 pin TV tube socket, four feet of cable, octal socket connector, and data shect.

Feathkit POWER SUPPLY KIT

MODEL PS- $\overline{2}$
$\$ 3350$
SHIPPING WT.
17 LBS.

The Heathkit Laboratory Power Supply features continuously variable, regulated voltage output with good stability under wide load variations. A $41 / 2^{\prime \prime}$ Simpson plastic enclosed panel mounted meter provides accurate meter output information of voltage or current. All panel terminals completely isolated from the cabinet. Separate 6.3 voit AC supply at 4 amperes for filament requirements. Ripple component exceptionally low, stand-by switch provided to eliminate warm-up time of the Give tube circuit.

LABORATORY AND

 SERVICESHOP
BOOKLETS

"Planning Your Service Business" by John T. Frye, and "Establishing the Industrial Electronics Laboratory" by Louis B. Garner, Jr., are booklets available to Heathkit customers at no charge. These booklets, written by nationally recognized authorities, outline the various requirements and considerations for establishing your own service business or for setting up an industrial electronics laboratory. Full attention is given to various derails that are frequently overlooked when projecs of this nature are undertaken. Jus questing your free copy, or attach a memo to your next order.

check these 马eatures

Visual and aural signal tracing
Two channel input
High RF sensitivity
Unique naise locater circuit

- Calibrated wattmeter

Wubstitution test speaker
\checkmark Utility amplifier
\checkmark RF, audia probes and test leads included

Preathett visual-AURAL
 SIENAL TRACER

An entirely new type of signal tracer incorporating a combination of features not found in any other instrument. Designed expressly for the radio and TV service man, particularly for the servicing of AM, FM, and TV circuits. Here in a five tube, transformer operated instrument are all of the useful functions so necessary for speedy, accurate isolation of service difficulty.

This new signal tracer features a special high gain RF input channel, used in conjunction with a newly-designed wide frequency range demodulator probe. High RF sensitivity permits signal tracing at the receiver antenna input. A separate low gain channel and probe available for audio circuit exploration. Both input channels are constantly monitored by an electron ray beam indicator, so that visual as well as aural signal indications may be observed. The instrument can also be used for comparative estimation of gain per stage.
A decidedly unusual feature is a noise localizer circuit in conjunction with the audio probe. With this system, a DC potential is applied to a suspected circuit component and the action of the
voltage in the component can be seen
as well as heard. Invaluable for ferreting out noisy or intermittent condensers, noisy resistors, controls, coils, IF and power transformers, etc. A built-in calibrated wattmeter circuit is very useful for a quick preliminary check of the total wattage consumption of the equipment under test. Separate panel terminals provide external use of the speaker or output transformer for substitution purposes. Saves valuable service time by eliminating the necessity for speaker removal on every service job. The terminals also permit the utilization of other shop equipment, such as your oscilloscope or VTVM. The T- 3 . Signal Tracer can be used as a high gain amplifier for checking tuners, record changers, microphones, phono crystals, etc.
Don't overlook the interesting service possibilities provided through the use of this new instrument and let it work for you by saving time and money. The kit is supplied complete with all rubes, circuit components, demodulator probe, audio probe, and tubes, circuit compon
additional test leads.

Heathkit DECADE RESISTANCE KIT
 MODEL DR-1 The Decade Resistance Kit provides ST-50 $\begin{aligned} & \text { individual switch selection of re- } \\ & \text { sistance values using twenty } 1 \%\end{aligned}$ sistance values using twenty 1% resistors providing a choice of 1 SHIP. WT. To 99,999 ohms in 1 ohm steps. 4 LBS. plated contacts, smoorh, positive detent action, baked enamel panel, and handsome, tent action, baked enam polished birch cabinet.

\#reathkit
 DECADE CONDENSER KIT

The Hcathkit Decade Condenser Kit MODEL DC-1 features silyer mica, precision con1%. Capacity values are arranged in three decades from 100 mmf to 111 mf in steps of 100 mmf . Ceramic $\$ 1650$
SHIP WT wafer switches with silver-plated con4 LBS. tacts and smooth detent action, Useful in laboratory work, for circuit development.

Heartheit RESISTANCE SUBSTITUTION BOX KIT

MODEL RST-1
The Heathkit Resistance Sub. stitution Box provides indi-

SHIP. WT. vidual switch selection of any 10% standard value resistors, ranging from 15 ohms to 10 meghoms. Many applica. tions in circuit development work, and also in radio and TV service work. Ideal for experimentally determining resistance values and for quickly altering circuit operating characteristics. Entire unit housed in attractive Bakelite cabinet, featuring the new universal type Heathkit binding posts to simplify. circuit connections.
 CONDENSER CHECKER KIT

MODELC. 3

SHIPPINGWT. 8 POUNDS

Use the Heathkit C- 3 Condenser Checker to quickly and accurately measure and accurately measure and resistor values. All readings are taken directly from the calibrated panel scales without requiring any involved calculation. Capacity measurements in four ranges from .00001 mf to $1,000 \mathrm{mf}$. Checks paper, mica, ceramic, and electrolytic condensers. A power factor control is available for accurate indication of electrolytic condenser measurements. A leakage test switch with switch selection of five polarizing voltages, 25 volts to 450 volts DC, will indicate condenser operating quality under actual load condition. The spring return leakage test switch automatically discharges the condenser under test and eliminates shock hazard to the operator.

Resistance measurements can be made in the range from 100 ohms to 5 megohms. Here again all values are read directly on the calibrated scale. Increased circuit sensitivity coupled with an electron beam null indicator increases overall instrument usefulness.
For safety of operation the circuit is entirely transformer operated and the instrument is housed in the attractive, newly-styled Heathkit cabinet, featuring rounded corners, and drawn aluminum panel. The outstanding low kit price for this surprisingly accurate instrument includes necessary test leads. Good service shop operation requires the use of this specialized instrument, designed for the express purpose of determining unknown condenser values and operating characteristics.

Freathbit AMATEUR TRANSMITTER KIT

CHECK THESE

NEW

Features
\checkmark Single knob band switching

MODEL AT-1
\checkmark Pre-wound coils
\checkmark Metered operation
$\checkmark 52$ ohm coaxial oufput
Wrystal or VFO excitation
Built-in power supply
SHIPPING WEIGHT
16 POUNDS

Rugged, clean construction

Here is the latest Heathkit addition to the ham radio field, the AT-1 Transmitter Kit, incorporating many desirable design features at the lowest possible dollar-per-watts price. Panel mounted crystal socket, stand-by switch, key click filter, AC line filtering. good shielding, etc. VFO or crystal excitation - up to 35 wats input. Built-in power supply provides 425 volts at 100 ma .
This kit features pre-wound coils, single knob band switching, 52 ohm coaxial output, plug in chassis provisions for VHO or modulator and rugged clean conseruction. Frequency range 80, 40, 20,

15, 11, and 10 meters. Tube line-up 6AG7 oscillator-multiplier. 6 L. 6 amplifier-doubler, 5 U4G rectifier. Physical dimensions $81 / 8^{\prime \prime}$ high $\times 131 / 8^{\prime \prime}$ wide $\times 7^{\prime \prime}$ deep.

This amazingly low kit price includes all circuit components, tubes, cabinet, punched chassis, and detailed construction manual. The ideal kit for the novice just breaking into ham radio. It can be used later on as a stand-by rig or an all band exciter for higher powered transmitter.

new Heathkit ANTENNA COUPLER KIT

New Heathkit Antenna Coupler, specially designed for the Heathkit AT-1 Transmitter. The Antenna Coupler can be used with any 52 ohm coaxial input - up to 75 watts power. Low pass filter with cut-off frequency of approximately $36 \mathrm{mc}-\mathrm{L}$ section tuning network - neon tuning indi-
cator ruged, compact consrruction cator - rugged, compact construction high Q coil are all ourstanding featutes. The $A C$ - 1 has both inductance and capaThe AC-1 has both inductance and capatility. Dimensions $81 / 8^{\prime \prime}$ wide $x \quad 4 \frac{3}{2 \prime \prime}$ high $\times 47 / 8^{\prime \prime}$ decp.
 $\$$ 11.50 SHIP. WT.

Heathkit

 COMMUNICATIONS RECEIVER KIT

Here is the new recciver kit you have repeatedly asked for the Heathkit Communications Recciver. The perfeat companion piece for the AT-1 Transmitter kit. Many outsrandingly desirable features have been incorporated in the design of the AR-2; such as, electrical bandspread for logging and tuning convenience - high gain mindature tubes - IF transtormers for high sensitivity and good signal to noise ratioseparate RF gain control with optional automatic volume control or manual volume control, in addition to the conventional audio gain control. Noise limiter - stand-by switch - stable BFO oscillator circuit - headphone jack - ransformer operation, etc., all contribute to a high performance standard.

Frequency coverage is continuous from 535 kc to 35 mc in four ranges. For added convenience, various ham bands have heen separately identitied in respect to their relative placement on the slide rule tuning scale. A chassis mounted, $51 / 2^{\prime \prime}$ PM speaker is included with this kit. Tube line up 12 BE 6 mixer oscillator. 12 BA 6 IF amplifiet, 12 AV 6 detector AVC audio, 12 BA 6 BFO oscillator, 12 A 6 beam power output, SY SGT rectificr. RECEIVER CABINET
Proxylin impregnated, fabric covered, plywood cabinet with aluminum panel designed expressly for the AR-2 Receiver. Part $91-10$, shipping weight 5 lbs., $\$ 4.50$.

\#eathkit ANTENNA IMPEDANCE METER

Use the Heathkit Antenna Impedance Meter for measuring antenna impedance for line matching purposes - adiustment of beam antennas - phone monitor, etc. It will determine antenna resistance at resonance, march transmission line for minimum Side , determine receiver input impedance, and pro-
vide a indication of $S W \mathrm{R}$. Precision resistors, germanium diode, 100 micro-
ampere Simpson meter. Dial ampere Simpson meter. Dial
calibrated from $0-500$ ohms.
Shict Shiclued aluminum cabinet. $7^{\prime \prime}$ long x $21 / 2^{\prime \prime}$ wide $\times 31 / 4^{\prime \prime}$ deep.

SHIP. WT. 3 LBS.

IMPROVED Feathkit GRID DIP

 METER KIT \$1950 ${ }^{\text {SHIP. wr. }}$ MODEL GD-1B The invaluable instrument for service men, hams, and experimenters. Useful in TV service work for alignment of traps, filters. IF stages, peaking compensation networks, ctc. Locates spurious oscillation, provides a relative indication of power in transmitter stages, use it for neutralization, locating parasitics, correcting TVI, measuring C, L , and Q of components, and determining RF circuit resonant frequencies. With oscillator energized, useful for finding resonant frequency of tuned circuits. With the oscillator not energized, the instrument acts as an absorption wave meter. Variable meter sensitivity control, head phone jack, 500 microanmere Simpson meter. Continuous frequency coverage from 2 mc . to 250 mc . Pre-wound coil kit and rack, new three prong coil mounting. 6AF4 high frequency triode.Two additional plug-in coils are available and provide continuous extension of low frequency coverage down to 355 kc . Dial correlation curves included. Shipping weight 1 1b., kit 341, \$3.00.
check these zeatures
\checkmark First popular priced Q Meter
\checkmark Reads Q directly on calibrated scale
Oscillator supplies RF frequencies of 150 kc to 18 mc
Valibrate capacitor with range of 40 mmf to 450 mmf with vernier of $\pm 3 \mathrm{mmf}$
Measures Q of condensers, RF resistance, and distributed capacity of coils
W Many applications in design and development work

Useful in IV service work for checking deflection yokes, coils, chokes, etc.

Another outstanding example of successful Heathkir engineering effort in producing a Q Meter Kit within the price range of TV service men, schools, laboratories, and experimenters. This Q Meter meets RF design requirements for rapid, accurate measurement of capacity, inductance, and Q at the operating frequency and all indications of value can be read directly on the meter calibrated scales. Oscillator section supplies RF fre-
quencies of 150 kc to 18 mc . Calibrate capacitor with range of 40 mmf to 450 mmf , with vernier of $\pm 3 \mathrm{mmf}$.
Particularly useful in TV service work for checking peaking coils, wave traps, chokes, deffection coils, width and linearity coils, etc. At this low kit price rescarch laboratory facilities are within the range of service shops, schools, and experimenters.

\#eathkit INTERMODULATION ANALYZER KIT

MODEL :M-1 s3950

SHIPPING WT. 17 POUNDS

The Heathkit IM-1 is an extremely versatile instrument specifically designed for measuring the degrec of intet-action between two signals in any portion of an audio chain. It is primarily intended for making tests of audio amplifiers, but may be used in other applications. such as checking microphones, rccords, recording equipment, phonograph pick-ups, and loud-speakers. High and low test freçuency source, intermodulation unit, power supply, and $A C$ vacuum test recquency source, imermoduation init, power supply, and AC vacaum tube volt meter an one complete instrument. Per cent mitermotulation is
directly reat on the calibrated scales, $30 \%, 10 \%$, and 3% full scale. Both $4: 1$ and $1: 1$ fatios of low to high frecuuency casily set up. With this instrument the pertormance level of present equipment, or newly developed equipment can be easily and accurately checked. At this low price, you can now cnioy the benefits of intermodulation analysis for accurate audio interpretation.

Feathkit AUDIO GENERATOR KIT

Heathkit
 AUDIO FREQUENCY METER KIT

The Heathkit Audio Frequency Meter provides a simple and convenient means of checking unknown audio frequencies from 10 cycles to 100 kc at any voltage level between 3 and 300 volts rms with any non-critical wave shape. Instrument operation is entirely

MODEL Af-1
\$345.0
SHIP. WT. 12 LBS. son $41 / 2^{\prime \prime}$ meter.
electronic. Just set the range switch, feed an unknown frequency into the instrument, and read the frequency directly on the calibrated scale of the Simp-

\#eathkit AUDIO OSCILLATOR KIT

Sine or square wave coverage from 20) to 20,000 cycles in three ranges at a controllable output level up to 10 volts. Low distortion, 1% precision resistors in multiplier circuits, high level output across entire frequency range, etc., readily qualify this instrument for audio experimentation and development work. Special circuit design consideration features thermistor operation for good control of lincarity.

Heathhit

Square wave generator kit

New Heathkit 20 WATt

 High Fidelity AMPLIFIER KITMODEL A-9A
A new 20 watt high fidelity amplifier, de. signed especially for custom audio installations demanding clean reproduction, adequate power, and flexibility to meet individual requirements. Separate treble and bass tone controls provide up to 15 db boost or cut. Four switch selected inputs, each with the necessary compensation for the service desired. Output transformer mpedances of 4,8 , and 16 ohms.
Preamplifier, tone control, and phase splitter circuits utilize 9 pin twin triode miniature tubes for low hum and noise
SHIP. WT. 18 LBS. level. Two 6L6 push pull power output quency response $+1 \mathrm{db}, 20-20,000$ cycles. Total harmonic distortion 1% (at 3 db below rated output). Tube line-up: 12AX7 preamplifier, 12AU7 voltage amplifier and tone control, 12AU7 voltage amplifier and phase splitter, two 6L6 push pull pentode power output, SU4G rectifier. Truly outstanding amplifier performance coupled with low cost.

new Heathkit

MODEL A-7B

SHIP. WT. 10 LBS. o provide necessary gain for operation with variable reluctance or low output level phono cartridge. Circuit is properly compensated for microphone operation. \$17.50.

Heathkit FM TUNER KIT
 The Heathkit FM- 2 Tuner was specifically designed for simplified kit construction. Can be operated through the "phono" portion of your radio or with a separate amplifier. The kit features a pre-assembled and adjusted tuning unit, three double tuned.IF transformers, and a discriminator transformer in an 8 tube AC operated circuit. Frequency coverage 88 to 108 mc . Experience the thrill of building your own FM tuner and at the same time enjoy all of the advantages of true FM reception.

Free catalog

Write for free catalog containing latest price.information, schematics, specifications, and descriptions of all Heathkits.

Another new Heathkit for the student, beginner, or hobbyist. If you have ever had the urge to build your own radio eceiver, this kit warrants your attention. New high gain miniature tubes and IF transformers provide excellent sensitivity and good signal to noise ratio. A built-in ferrite core rod type antenna has been provided. A chassis mounted $51 / 2^{\prime \prime}$ PM speaker provides excellent tone and volume. Convenient phono input. Can be operated either as a receiver or tunct. Simplified construction manual outlines circuit theory. Ideal for students. Tube line-up: 12BE6 mixer oscillator, 12BA6 IF amplifier, 12 AV 6 detector-AVC-first audio, 12 A 6 beam power output, 5 Y 3 GT rectifie

MODEL BR-2
$\$ 1750 \begin{gathered}\text { SHIP. WI } \\ 11 \text { LBS. }\end{gathered}$

CABINET - Proxylin impregnated fabric covered plywood cabinet. Shipping weight S lbs. Part number $91-9, \$ 4.50$.

CHECK THESE

NEW
 Features

P Plays all record sizes, all speeds
Newly developed ceramic cartridge
\checkmark Automatic shut-off for both changer and amplifier

- Acaustically correct cabinet enclasure
\checkmark Madern attractive styling
- Two 6" PM matched speakers
- Campensated valume cantrol
\checkmark Easy to assemble

An entirely new introduction to quality record reproduction, a simple to operate, compact, table top model with none of the specialized custom installation problems usually associated with high fidelity systems. Two matched, synchronized speakers mounted in an acoustically correct enclosure reproduce all of the music on the record. Musical reproduction with the unique sensation of being surrounded by a halo of glorious sound. This spectacular characteristic is possible only because of the difused non-directional properties of the matched dual speakers. The Hearhkit Dual makes listening to fine recorded music a thrilling new experience through naturally clear, life-like reproduction of sound at all levels throughout the tonal system. The performance level is vastly superior to that of the ordinary phonograph or console selling for many, many times the price of the Dual.
Record Changer plays all sizes - all specds-automatic shut-off for changer and amplifier after the last record is played. A wide tonal
range ceramic cartridge features an ingenious turn-under twin sapphire stylus for LP or 78 records withour turning the cartridge. Simplified, easy to assemble, four tube amplifier features compensated volume control and separate tone control. Proxylin impreg nated fabric covered cabinet supplied completely assembled. You build only the amplifier from step-ty-step construction. No specialized tools or knowledge required, as full recognition has been given to the fact that many purchasers of this kit enjoy good musical reproduction on a purely non-teclanical. basis, and the construction manual has been simplified to the zoint where even the complete novice can successfully construct the Heathkit Dual. The price of the Heathkit Dual includes cabinet, - Record Changer, two 6" PM speakers, tubes, and all circuit components required for amplifier construction.

HEATH COMPANY. Benton Harbor 20, Mich.

CAPACITANCE and the RATIO DETECTOR

By CYRUS GLICKSTEIN

ONE of the handiest tools in analyzing circuits is an exact knowledge of how capacitors work. When a new circuit seems hard to understand, I've usually found I haven't fully analyzed the capacitor action. Once that is completely clear, the over-all circuit operation becomes simple to follow.

Most of the facts on how capacitors work are well known. But every so often a circuit is developed where capacitors act in a way not described in the textbooks. A popular circuit found in many FM and TV receivers bears out this point.

The unbalanced ratio detector is shown in Fig. 1. Very little detailed

Fig. 1-The unbalanced ratio detector.
analysis of this circuit has appeared in print. Most of the published explanations have not fully described the operation because of an incomplete analysis of capacitor action.

The ratio detector circuit in Fig. 1 acts as a combined limiter and detector for FM sound signals. Transformer T1 is an i.f. transformer with a primary Lp , a secondary which is center-tapped and consists of two equal halves (L1 and L2), and a third or tertiary winding (L3). An i.f. signal from the primary
is inductively coupled into the secondary and tertiary windings.

At the resting frequency, the voltages across the secondary and the voltage across the third winding (L3) are 90 degrees out of phase. The diodes conduct as usual only when the plates are positive compared to the cathodes. Conduction occurs when the polarity across the secondary is such that the cathode of V1 (top diode) is negative and the plate of V2 (bottom diode) is positive. The diodes therefore do not conduct on the positive half of the incoming signal. Also, the large timeconstant of R1-C1 makes this section of the circuit act as a limiter. The peak value of the voltage across the secondary is rectified and developed

VOLTAGE ACROSS LI\& L2
Fig. 2-Simplified and equivalent circuits showing the voltage across R1-C1.
across R1-C1.
Specific voltage values will be used to clarify circuit operation. At the resting frequency, assume the peak voltage across each half of the secondary is 5 and the voltage across the third winding (L3) is also 5 . Two actions take place: First, the entire secondary-L1 and L2 in series-acts as a generator during the entire negative half-cycle. The total secondary voltage of 10 is across the diodes and R1-C1. The diodes conduct and practically all of the source voltage (10 volts) can be considered across R1-C1, since the voltage drop across the diodes is negligible. This action is shown in Fig. 2.

In addition to this action, a second action is taking place simultaneously during the first quarter-cycle (first half of the negative alternation). One-half of the secondary, L2, is in series with L3 across the bottom diode and C2. The two windings act as out-of-phase generators in series. The voltage polarity is such that current flows through the bottom diode V2 and charges C2 as shown in the simplified circuit of Fig. 3. The rectified voltage across C2 will have the polarity shown-negative with respect to ground-and will be - 7 (the vector sum of 5 volts across L2 and 5 volts across L3; the two voltages are 90 degrees out of phase). Now in the next quarter-cycle (second half of the negative alternation), the entire secondary is still across R1-C1 as in Fig. 2. Simultaneously, the polarity across L3 reverses and L3 is now in series with L1. L1 and L3 now act as two out-of-phase generators in series and the voltage polarity is such that current flows through the top diode V1. The current path is through V1, R1-C1, and C2 as shown in Fig. 4. Note that

Write for a list of the Centralab distributors in your area who have P.E.C. Kits.

PCK-45 45 P.E.C. units. Replace 133 oid-style ca.
pacitors. Net $\mathbf{\$ 2 4 . 0 0}$

A Division of Globe-Union Inc.
there is 10 volts across $\mathrm{R} 1-\mathrm{C} 1$ and 7 across C2 as a result of the action in the first quarter-cycle. In this second quarter-cycle, therefore, the voltage in C2 is in series-aiding with the voltages across L3 and L1 but this combined total is bucking the voltage across R1-C1. This is illustrated in the simplified schematic of Fig. 5. This means that 7 volts (vector sum of the voltages

Fig. 3-Peak voltages across L2 and L3 are rectified and developed across C2. across L1 and L3) plus the 7 volts across C2 (total -14 volts) is bucking the 10 volts across R1-C1. As a result, there is a difference of 4 volts and C2 discharges 4 volts worth. Since it had -7 volts to start with, this leaves -3 volts across C2. As long as the incoming signal remains at the resting frequency, then, the voltage across C 2 will be -7 volts on the first quarter-cycle and -3 volts on the next quarter-cycle for each half-cycle when the diodes conduct. The average d-c voltage across C2 is -5 volts. That is, a d.c. meter placed across C2 cannot measure the instantaneous changes at each quartercycle but measures the average level of voltage.

Fig. 4-Diagram showing current flow during second quarter cycle of signal.

It is interesting to note that the average d.c. voltage across C2 (-5 v) is exactly half the voltage across R1C1 (-10 v). This is true in every ratio detector at the resting frequency. In fact, when aligning a ratio detector, two equal resistors ($R 2$ and R3) in series are temporarily soldered across R1-C1, to divide the voltage in half. A d-c meter is then placed at the junction of the two resistors (Fig. 6) and the top of C2. The secondary circuit of T1 is then tuned, while applying a signal at the
resting frequency, until the meter reads zero-that is, until the voltage across C2 is exactly equal to one-half the voltage across R1-C1.

When the signal frequency deviates to one side of the resting frequency, the following occurs: The rectified vector sum of the voltages across L2 and L3 becomes greater across C2 (let us say 8 volts). C2 therefore charges to this value. On the next quarter-cycle, the vector sum of the voltages across L1 and L3 is less. This value (assume it is 6 volts) is in series with the 8 volts across C2 and bucks the 10 volts of R1-C1. Therefore 14 volts bucks 10 volts and C2 discharges 4 volts or down to -4 volts (subtracting 4 volts from the original 8 leaves 4 volts). The average value across C 2 for the two quarter-cycles is -6 volts (Fig. 7-b). Assuming still further deviation, C2 charges up to -9 volts, discharges down to -5 volts, leaving an average now of -7 volts (Fig. 7-c).

When the deviation returns to zero, the charge across C2 goes to -5 volts. With deviation on the other side of the resting frequency, the average voltage across C2 goes to -4 volts then to -3 volts, returning to -4 volts and -5 volts. As a result, a pulsating negative d.c. voltage is produced across C2 which gives 1 cycle of audio for each complete frequency swing of the incoming signal.

One further point on how limiter action is effected in this circuit. Any instantaneous increase of signal voltage across the secondary will not cause C1 to charge up immediately because of the large capacitance of C 1 . Therefore, even with a noise pulse coming through, R1 and C1 have the same voltage.
To illustrate the action at the resting frequency with figures: Assume R1-C1 have 10 volts across them when an instantaneous noise pulse increases the voltage across the secondary to 14 volts (7 volts across each half) and the voltage across L3 to 7 volts. The vector sum of the two voltages is 10 volts, and C2 charges up to this value. Then the 10 volts across C2 is in series with the 10 volts across L1 and L3 bucking the 10 volts across R1-C1. The difference is 10 volts, so C 2 discharges to zero. The average voltage across C 2 is

$$
\frac{-10+0}{2}
$$

or -5 volts as before. It is interesting to note that, no matter what values are chosen, and throughout the change of values due to deviation, any instantaneous increase of voltage across the secondary and across L3 will not change the voltage output across C2 compared with the no-noise condition, provided R1-C1 remain at the original voltage value.
A point which is basic to understanding capacitor action is how r.f. and d.c. voltage add together. The voltages across each half of the secondary and across L3 are r.f. voltages. The voltages across R1-C1 and

C2 are rectified r.f., therefore d.c. voltages. It is entirely possible for an r.f. voltage to be in series-aiding (or series-bucking) with a d.c. voltage. It is further possible for a combined r.f. voltage in series-aiding with a d.c. voltage to be applied in opposition to a bucking d.c. voltage. The direction of current flow in the circuit then depends on the difference between the two sets of voltages-on which is larger at a given instant.

VOLAGES IN IST QUARTER CYCLE

VOLTAGES IN 2ND QUARTER CYCLE
Fig. 5-Simplified circuit of Fig. 4.
Some previous explanations of the action in this circuit are based on the assumption that on one quarter-cycle, C2 (Fig. 1) charges through the lower diode, but on the next quarter-cycle C2 charges equally in the opposite direction through the upper diode. It is maintained that at the resting frequency the voltage across C 2 is zero. It is further assumed that C2 can charge equally through the upper diode because

Fig. 6-Aligning ratio detector. Secondary is tuned for zero output on meter. C1 has practically zero impedance ior r.f. This explanation is defective on at least three counts. (1) Rectified r.f. is no longer r.f. but d.c.; therefore it is incorrect to state that C 1 has zero impedance to r.f., since the diodes rectify the r.f. (2) There is a definite d.c. voltage across $\mathrm{R} 1-\mathrm{C} 1$ which cannot be ignored in the explanation of how voltages are developed across C2. (3) The average d.c. voltage across C 2 at the resting frequency is not zero but one-half the voltage across R1-C1. The detailed explanation of the circuit in this article takes each of these points into consideration.

Fig. 7-Voltage across C2 during deviation to one side of resting frequency.

How to pick a

 TV

 TV Radio Electronics

Using known quantities and your engineering mind,

you can accurately decide which school is best for YOU

DOES THE SCHOOL OFFER THE COURSES I NEED?

Capitol Radio Engineering Institute offers up-to-date courses in:

\square Introduction to Practical Radio Engineering
Advanced Practical Radio Engineering
\square Specialized Broadcast Radio Engineering
\square Specialized Aeronautical Radio Engineering
\square Specialized Television Engineering
\square Specialized Advanced Mathematics
Practical Television Engineering
\square Television and FM Servicing
\square Television Studio Operations

HOW LONG HAS THE SCHOOL BEEN ESTABLISHED?

In 1927, CREI introduced the first home study course in practical radio engineering for the experienced radioman-and since then has successfully trained thousands of professional radiomen all over the world.

WHO INSPIRES THE SCHOOL'S POLICIES AND OPERATION?

Mr. E. H. Rietzke, founder and president of CREI, has been prominently identified with radio and technical education for many years. He was the original Chief Instructor of the Navy's Advanced Radio Materiel School at the Naval Research Laboratory. In 1944 Mr. Rietzke was elected President of the National Council of Technical Schools, of which he is one of the founders. He repre-
sents the proprietary technical schools of the United States on the Technical Institute Sub-Committee of the Engineers' Council for Professional Development. He is past chairman of the Washington Section, Institute of Radio Engineers, and for a number of years represented that body as a delegate to the D.C. Council of Engineering and Architectural Societies. He is a Registered Professional Engineer (DC).

WHAT IS THE BACKGROUND OF THE FACULTY?

Every CREI faculty member has experience and contacts in industry as well as in the educational world. CREI's VicePresident in charge of engineering Albert Preisman was employed by the Wagner Electric Corp.; the New York Edison Co.; he was on the staff at RCA for 13 years; and was senior engineer at Federal Telephone and Radio Corporation. He is a Fellow in the Institute of Radio Engineers.
CREl's chicf home study instructor likewise enjoys a rich employment background, having worked with Bendix Radio, among others. And so on down the line.

WHAT TEACHING METHODS ARE USED?

CREI planned home study is an individual method of instruction. You receive continuous attention and assistance to meet your special needs. Upon enrollment, you receive your first set of lessons-each with its own examination, which you send in for correction and comment. Before you complete the first group of lessons, you receive the next set. Thus, you always have a sufficient number of lessons at hand to proceed as quickly as you like. In CREI's plan of "personalized" instruction, you will be assigned to competent instructors, who will guide you through your studies and offer prompt additional explanations. They will recommend steps which will contribute to a more complete understanding of the subject matter and will personally correct and explain errors.

WHAT ARE THE LABORATORY FACILITIES?

CREI residence school is well-equipped with modern radio and television apparatus, with a large variety of laboratory measuring and testing equipment and with parts and supplies for the construction of experimental devices and apparatus. CREI maintains a fully equipped Television Studio and laboratories for experimentation in this important electronic art. In our Ultra-High Frequency laboratory, experimental set-ups are used operating over a wide range of frequencies and circuits to 3,000 megacycles. This extensive lab equipment is at the disposal of our technical staff in preparing the coursesand directing your study.

WHAT TEXTS WILL YOU USE?

CREI lesson texts are the same as used in the Residence School. Their excellence has heen proved by thousands of students. The U.S. Navy during World War II purchased more than 300.000 CREI Home Study Lessons. Every lesson is clear, practical and understandable.

IS THE SCHOOL ACCREDITED, AND IF SO-BY WHOM?

CREI Home Study Courses are accredited by the Engineers' Council for Professional Development. CREI is an approved member of the National Council of Technical Schools.

WHAT IS THE TECHNICAL LEVEL OF THE STUDENTS WHO ENROLL?

In the 26 vear history of CREI, 98% of all students were engaged in some phase of radio-electronics at the time of their enrollinent.

WHAT POSITIONS AND LICENSES WILL YOU BE QUALIFIED TO ACCEPT?

An advanced student of CREI should easily pass the FCC examination. CREI students and graduates are employed in practically every phase of the radio-electronics industry, in positions ranging from technicians to engineers.

DOES THE SCHOOL TEACH WHAT INDUSTRY WANTS AND NEEDS?

CREI technical training is used for training technical staffs in many of the country's great industrial organizations, including United Air Lines; Pan American Airways, Atlantic Division; All-American Cables \& Radio, Inc.; Radio Corporation of America, RCA Victor Division; Trans-Canada Air Lines, Canadian Aviation Electronics. Ltd.; Canadian Broadcasting Corporation, Columbia Broadcasting System; Canadian Marconi Company; Machlett Laboratories; The Magnavox Company; Hoffman Radio Corporation and Glenn L. Martin.

WHAT DO EXPERIENCED ELECTRONICS PEOPLE IN YOUR HOME TOWN SAY ABOUT THE SCHOOL?

CREI invites you to ask your local radio engineer, or television engineer-or anyone prominent in tv-radio-electronics about CREI. We will be satisfied with what these experts tell you about CREI. Or if you are on active military duty ask one of your superiors who is a specialist in radio-electronics.

WHAT CLAIMS OR PROMISES DOES THE SCHOOL MAKE?

Like all ethical schools, CREI makes no rash claims or promises of jobs. CREI states frankly there is no high road to success in electronics. Only study and work . . . can bring you to your goals. And a good way to start is by sending in the coupon below. We will send you, free of obligation, our illus-
 trated, valuable booklet, "Your Future in the New World of Electronics." In it you will see where the industry is headed and how you can skyrocket up along with the industry by the proper choice of goals, and the best possible selection of schools. Act today. Hear from us immediately. Then make your choice of courses.

[^7]
Shortcut Service

 on RadiosBy FAIRBANKS TRYON

N0 ONE can proceed to fix any radio simply by reading "how-to-do-it" books. But he can learn enough about specific troubles from an article by an experienced technician so that he may service a set that has similar troubles.
I have used this method in tackling a.c.-d.c. sets in my shop for about 15 years. It has saved lots of time-and a lot of radios. Many service technicians make the mistake of plugging in the set before they even look at it. If the filter capacitors are leaky or shorted this is just about the worst thing you can do. Always check for shorts first!
When handling a.c.-d.c. sets with tube rectifiers (this does not include 3-way portables), make the following tests before plugging in the set or even before taking it out of the cabinet:

1. Set the ohmmeter on its highest range; then short the leads and zero the pointer.
2. Don't plug in the set, but turn the switch off, and hook the meter test prods across the prongs of the line plug. See Fig. 1. The meter should read anywhere from several hundred megohms to infinite resistance. Anything less than this indicates a short or leak in the line cord, the line-filter capacitor, or the switch. (In many cases carbon granules wear off the volume-control resistance element and get into the switch mechanism.) A high-resistance leak here would not stop the set from operating, but could make it very noisy.
3. If this test shows everything normal, switch the ohmmeter to its 2,000 ohm range (or thereabouts) and turn the set on. The meter should now read between 100 and 150 ohms. (If the set has a 110 -volt pilot light, this reading may be as low as 50 ohms.) If the meter reads less than 95 ohms, take a look at the pilot light; if it's a 110 -volt type remove it and repeat the test.
4. If this test shows an open circuit, hold the test prods firmly on the plug prongs and bend the line cord back and forth-especially near the plug, and where the cord enters the chassis. Should the meter kick over when you bend the cord, it means the cord is broken somewhere between the plug and the chassis.
5. If the meter still shows an open circuit, remove one tube at a time and touch the test prods to the tube heater pins. (Check the tube-base diagrams to make sure you get all the heater pins, as there are 3 on some tubes.) No-
reading across any two heater pins indicates the tube is open, and replacing it with a new one may be all you have to do to fix the set.

There is always the possibility that more than one tube is open, or that one is open and another is intermittent. The reading at the line plug will tell. Of course an open reading with all tubes good (and in the right sockets), and the line cord good, would leave only the switch or a series resistor (if there is one in the circuit), which might be open; or a broken connection or cold-solder joint in the heater wiring.
6. Suppose the meter reads about 400 ohms at first; then drops back slowly to 150 or 200 . (A 110-volt pilot lamp will fool you here unless you remove it.) This clearly indicates an intermittent filament or a high-resistance contact, which is reduced by the voltage of the ohmmeter.
7. I have found that the output tube is the one that's most often intermittent. Test it first, and the: the 12SA7, 12SK7, 12SQ7, and $35 \mathrm{Z5}$ (or their equivalents), in that order. The resistance reading across the filament of an intermittent tube will generally be abnormally high at the instant the test is applied. (Good filaments should read 10 to 15 ohms on 12 -volt tubes, and 20 to 50 ohms on 35 - and 50 -volt types.) A reading of 100 to 300 ohms on any tube filament indicates a probable intermittent. If the complaint is an intermittent set, or you are in doubt about the results of the resistance test, try the tube in the tube tester. Bad- or weaktube indications, and excessive warmup periods before any reading shows on the tester are all indications of an intermittent heater.
8. Any reading of much less than about 100 ohms across the line plug with the switch on probably indicates a leak or a short, and the set should not be plugged in until the trouble has been cleared and normal reading restored across the plug. Start by removing the rectifier tube from its socket; turn the switch on; and, with the meter on its 2,000 -ohm range, hook one test prod to the switch side of the line plug and touch the other test prod to the two outside heater contacts of the rectifier socket in turn. One of these positions should read open; the other should read the combined series resistance of the remaining tube heaters (between 75 and 120 ohms). Then repeat this test with the power-output tube and

Fig. 1-Checking for shorts in the input circuits of a.c.d.c. receivers. Proportional readings should be obtained between the individual tube-socket heater terminals and the switch side of the line plug if all is well.

Fig. 2-Isolating leaky or shorted filter and bypass capacitors by comparing resistance readings to switch side of line plug at rectifier cathode terminal and output screen terminal. Lowest reading shows which side of filter resistor defective capacitor is on.
each of the remaining tubes in the heater string.

9 . Now set the meter on the 20,000 ohm range and check from the rectifiersocket cathode terminal to the switch side of the line plug. Any reading under 20,000 ohms at this point indicates a short or a leak on the B plus line (except that at the instant of contact the meter pointer may kick all the way over and then swing back slowly-this is the initial discharge and slow recharge of the filter capacitors from the ohmmeter battery, and is perfectly normal).

Readings which indicate leakage on this test also include any paper, mica, or ceramic bypass capacitors across the B plus line as well as the electrolytic filters. To isolate the trouble, you will have to pull the chassis and disconnect at least one side of each electrolytic.
(Sometimes it may be possible to isolate the bad capacitor without pulling the chassis. In most a.c.-d.c. sets the B plus for the plate of the output tube is taken directly from the rectifier cathode, while the output screen voltage and the B supply for the other tubes are taken off the end of a $1,000-$ to $2,200-\mathrm{ohm}$ filter resistor. See Fig. 2. Measure the resistance to the switch from the rectifier cathode terminal and from the output screen terminal. If the first reading is lower, it shows the input filter is the defective unit. If the second reading is lower, it indicates the output filter-or a bypass capacitor -is bad.-Editor)

Any technician who tries these tests will find he can restore over 50% of all a.c.-d.c. sets to operating condition by this method.

MONEY BACK GUARANTEED TO RECEIVE, All UHF and All VHF STATIONS IN All DIRECTIONS FOR 60 MILES WITHOUT A ROTORMOTOR OF ANY KIND!!

WORLD'S MOST POWERFUL UHF - VHF TELEVISION ANTENNA

While antenna reception is guaranteed for 60 miles, perfect pictures have been consistently received as far as 160 miles from stations.

- LOW-LOSS PHENOLIC INSULATORS
- USES NEW 4-CONDUCTOR MATCHED IMPEDANCE LINE
- ONLY 10 INCH SPACING beTween antenna bays

one installation

ONE ANTENNA
ONE TRANSMISSION LINE

ATTENUATION PROBLEM

An unusual trouble-shooting problem came up a few years ago during a production run of BA289 band-rejection audio filters for the CAA. These filters had to attenuate a narrow band of frequencies around 1,020 cycles more than 100 db , while their insertion loss at all other frequencies had to be held to less than 10 db .

The exceptionally steep filter characteristic called for setting each of several adjustable inductors to the right value with a high degree of accuracy.

Physically, the filters were multisection coil-and-capacitor devices assembled in riveted aluminum-alloy cases. Since the aluminum case was in close proximity to the coils, the pattern of the eddy currents induced in the case had considerable influence on the settings.

After adjusting the filters for the required electrical characteristics, the cases were filled with a molten mixture of beeswax and rosin. Then the cover was put on and fastened with self-tapping screws.
This was the trouble: Tests made on the units after they were filled with wax and sealed showed that they had lost their 100 db attenuation; in fact, most of them had lost as much as 50 to 60 db . After a good deal of study, during which rejected filters were piling up in great quantities, it was definitely established that the hot wax was not causing the coils and capacitors to drift, but that the trouble was caused solely by the riveted aluminum-alloy case.

When the hot wax was poured into the box, the rapid heating caused a substantial increase in the contact resistance at the riveted joints. This altered the eddy-current distribution and changed the highly critical inductance values. The tuning in a $100-\mathrm{db}$ device is so sharp that the slightest change in inductance is sufficient to destroy the ottenuation characteristics. To obtain an attenuation so great over so narrow a band of frequencies it is necessary to use coils of very high Q. The slightest changes in magnetic fields caused by eddy currents lowered the Q.

The solution to the problem was to replace the riveted aluminum box with a drawn, seamless enclosure. This was immune to changes in eddy-current distribution under the heat of the wax, and the filters remained perfectly stable after potting.-Sidney Wald END

The Model 660-A comes complete with coaxial cable test lead and instructions.

Superior's New Model 660-A AN AC OPERATED

SIGNAL GENERATOR

PROVIDES COMPLETE COVERAGE for AM-FM \& TV Alignment Spelifications:

Abstract

- Generates Radio Frequencies from 100 Kilocycles to 60 Megacycles on fundamentals and from 60 Mega cycles to 220 Megacycles on powerful harmonics. Atcuracy and Stability are assured by the use of permeability trimmed Hi-Q coils. - R.F. avallable separately or modulated by the Internal audio oscillator. - Built in 400 eycle sine wave audio oscillator used to modulate the R.F. signal also available separately for audio testing of receivers, amplifiers, hard of hearing aids, etc. R.F Oscillator Circuit; A high transconductance hep

Tode is used as an R.F. oscillator, mixer and amplifler. Modulation is effected by electron coupling in the mixer section thus isolating the oscillator from load changes and affording high stability. A.F. Oscillator Circuit: A high transconductance heptode connected as a high-mu triode is used as an audio oscillator in a High-C Colpitts Circuit. The output (over J Volt) Is nearly pure ine wave. Attenuator: A 5 step ladder type of attenuator is used.

Tubes used: I-6BEb as R.F. Oscillator, mixer and amplifier. I-6BE6 as Audio Oscillator. I-bH6 as Power Rectifier.

$\$ 4295$

- MODEL $670 . \mathrm{A}$
 \qquad

 monthly for 6 months. Balance 0 MODEL TV. 11 . $\$ 11.50$ down payinent. Balance $\$ 6.00$monihly for 6 months.

- MODEL G60-A $\begin{aligned} & \text { M } \quad . . . \text { Total Price } \$ 42.95 \\ & \$ 12.95 \\ & \text { down payment. Balance } \$ 5.00\end{aligned}$ $\$ 12.95$
monthly
dow 8 payment.
ㅁ I enclose $\$$. as down payment. O Ship C.O.D. for the down payment.

Heterodyne Frequency Meter uses pair of Transistors

Front view of the transistorized frequency meter in its compact metal case.

Photograph of the mixer and audio components mounted on a terminal board.

WITHIN its frequency and power limitations, the junction transistor offers interesting possibilities of application in portable test instruments. In our fervor to transistorize amplifiers, receivers, transmitters, and control devices, we should not overlook the heterodyne frequency meter. It is one instrument which can be transistorized readily, and its operation is not handicapped by the limited high-frequency response of the type CK722 transistor now easily obtained.

Battery operation of the heterodyne frequency meter always has been desirable in the interest of complete isolation from power lines, of portability, instant operation, and low heat generation. But battery operation usually has not been feasible because of the cost, weight, and size of the A and B batteries required; comparatively short battery life, especially if the instrument is left running by mistake; and annoying microphonics in battery-type tubes.

Portable test instruments offer an

excellent opportunity for tran-
sistors to do their stuff. Small size and light weight make them ideal.

By RUFUS P. TURNER

The meter with rear cover removed. All parts are visible except $\mathrm{R} 1, \mathrm{Cl}$, and V 1 .

A frequency meter using junction transistors has none of those disadvantages and has the following desirable advantages: (1) Complete isolation and portability. (2) Small size. (3) Light weight. (4) Practically zero heat generation. (5) Low-current operation from a single battery. (6) Instant operation. (7) No microphonics. (8) Long battery life with small loss during accidental left-on periods. (9) Infrequent "tube" replacements, since the transistors are believed to have a life of tens of thousands of hours. (10) Ability of the instrument to take rough handling without damage.

The basic instrument

The heterodyne frequency meter is well known to commercial radio operators who use it frequently to measure transmitter carrier frequency. Hams use this instrument supplementarily as a c.w. monitor and receiver calibrator. The heterodyne frequency meter is a common instrument in radio-frequency laboratories where it is used to check the frequency of r.f. oscillators and signal generators and as a comparator.

The block diagram in Fig. 1 shows the basic arrangement of a heterodyne frequency meter. The r.f. oscillator uses
an inherently stable circuit tunable over a single frequency band. Its output is fed into an aperiodic detector or mixer together with the test signal to be measured. The oscillator and test signals (or some harmonics of one or both) produce a beat note which then is amplified by the audio amplifier and monitored with headphones or a visual indicator. The r.f. oscillator is tuned to zero-beat with the signal and the frequency is read off the oscillator dial. The dial may be directly calibrated.

The test-signal frequency may be lower than the fundamental frequency range of the oscillator. Its harmonics then beat with the oscillator. Or the signal frequency may be higher than that of the oscillator, in which case an oscillator harmonic will beat with the signal. In this way, we use the instrument over a wide frequency range extending from f / n to $\mathrm{n} f$, where f is the oscillator fundamental frequency at some suitable setting, and n is a multiplier or divisor representing the most remote useful harmonic or subharmonic which will give a sufficiently strong beat note. Thus, in one commercial heterodyne frequency meter, the oscillator is tunable from 100 to 200 mc , and the useful measurement range (from f / n to $\mathrm{n} f$) is 10 to $2,000 \mathrm{mc}$. (In this instance, the factor n is 10 .)

Transistorized meter

When using a junction transistor in the r.f. oscillator section of a heterodyne frequency meter, the designer is limited by the fact that this type of transistor ordinarily will not oscillate beyond the top of the standard broadcast band. However, by tuning the transistor oscillator from 500 to $1,000 \mathrm{kc}$., the practical

Fig. 1-Block diagram of the meter.
measurement range is found to be 50 kc or less to 30 mc . Response at the high frequencies is dependent to a great extent upon the strength of the test signal.

Fig. 2 shows the complete circuit of the transistorized heterodyne frequency meter. Type CK722 transistors are used in the r.f. oscillator and a.f. amplifier stages, and a CK705 germanium diode is used in the mixer stage. The r.f. oscillator is a high-gain grounded-emitter amplifier provided with inductive feedback through the tickler coil L1. The r.f. output from the oscillator is coupled to the diode mixer circuit through pickup coil L3. Coil L2 is a Miller type 20-A antenna coil (113 turns of No. 32 wire closewound on a 1-inch-diameter form) with the slipover primary removed. L1 consists of 40 turns of No. 26 enameled wire closewound on top of L2 and wound in the same direction as L2. L3 is 15 turns of insulated hookup wire jumble-wound and cemented inside the form on which L2 is wound. So that the reader may phase these coils properly for oscillation, the tops of L1 and L2 have been labeled X and Y respectively in Fig. 2. X and Y are the beginnings or ends of each coil. It is immaterial which is chosen as long as they correspond.

The test signal is applied to the mixer through coupling capacitor C 4 . Audio output from the mixer is coupled through transformer T (a UTC type SO-2) to the grounded-emitter a.f. amplifier. Note that the interstage transformer is connected backward to match the low input impedance of transistor V2.

The entire instrument is powered by a miniature 15 -volt battery. The 15 volt potential is necessary for highfrequency oscillation because with 1.5 to 10 volts, not all CK722 transistors will operate up to and including the broadcast band. While for size considerations, a hearing-aid-type battery is shown here, a larger-sized battery can be used and may be more desirable, from a life standpoint, to individual builders. Total measured current drain is 440 microamperes d.c. in this instrument, but this may be expected to vary in each direction with individual transistors.
(CONTINUED ON PAGE 90)

The finest speaker ever made by Permoflux . . . retaining all the exceptional features of the famous Royal Line . . . plus new developments in design giving you a performance which is Virtually Distortionless. It has Full Range Response (to the limits of audibility), and Superior Damping with Maximum Sensitivity.

This unsurpassed performance is due to exclusive Permoflux features, such as \star T.S.C. (treated slotted cone) for extendec distortionless low frequency response. \rightarrow Latest design in magnetic structure utilizing heavy Alnico 5 ring magnet for maximum flux density.

Available in 3 sizes -
8,12 and 15 inch

* Specially designed single cone radiator for full high and low frequency response, without the phase distortion due to separate spealers for high and low frequencies. for descriplive
literature write to...

See and hear the
Super Royal at your High Fidelity Dealer

THE NEWEST, THE ONLY ONE OF ITS KIND!

81/2" OSCILLOSCOPE: PRECISE MODEL \#308
Now another great Precise Oscilloscope! The only $81 / 2$ " Oscilloscope on the Commercial Market . . . in Kit or Wired Form... at an unbelievably low price. Designed to bring you true TV picture clarity and laboratory tested accuracy.
all the outstanding features of the MODEL 300 as shown below, PLUS:

* INTENSIFIER ANODE

\star HI-LOW-NORMAL SYNCH. (A Precise First) $\star 81 / 2$ INCH TUBE (A Precise First) \star Voltage regulation (A Precise first) "Seeing is Believing"-Go and See! your nearest jobber

$$
308 \mathrm{~K}-\mathrm{kit} \text { form }
$$

SPECIFICAYIONS: PRECISE MODEL 300 OSCHLDSCOPE
Eertical - vertical -lat iadol DC though 5 megacyeles with sensituity of

 OSITIONING -- Bridge type
positioning - Bridge type positioniag on vertical and horizontal ooes
not vary tube charactenistics. HORIZONTAL - Frequency comp
mplifier: Push-pull Hortzontal put. Blanking - Internal (Velurn trace Dlanked). external (return trace not
Dlanked). so cycle of 120 cycle 日lanking through Blanking ampliliee cir. sult.
SYNCHRONIZATION - External. Internal Positive, Internal Negative.
 MAGMIFIER-Electionic masnifier and magnifier positionet allows an part ot a signal to oe m)
of horizontal denection).
CALIBRAIIIN - Internal square wave calibator and polentiometer for
using oscilloscope at a VIVM on Peak to Peak measurements.
CALIDRATION SCREEN - Edge-illuminated scale and graticule may be
furned on or OH: fillered screen
OUTPUTS ON FRONT PANEL - Plus Gate output: Sawtooth output; 60 cycte
phasing output; 60 cycle unphased output; Calibration output. phasing output: 60 crcle unphased output; Cailbration output. ocuSing - Astigmalism, focus and intensity control.
CRT WEW 7- Tube. normaliy supplied is medium persistency type 7 IR)
(oscilloscope green (race) - high persistency types availabie at additionat cost.
OIRECT - Deflection plates available fiom rear of cabinet
NTENSITY MODULATION - Z modulation through modulation amplifier GENERAL - Low loss components; Over-destigned fused power supply for

 extra cost - please see specifications on followning pages. Thete die many additional tealures and circuits in hit form, which may be
atded to the Model 300 Please wiste us for descripilive literature.

300 K —kit form 300 W -factory wired__

MOOCL
OELUXE
Yat
KAC
VAC. MODEL 909 K
$\$ 25.98$

precise

DEVELOPMENT CORP.
OCEANSIDE, NEW YORK
\$94.95

rices slightly higher in the west. Prices and
PRECISE DEVEROPMENI CORP.
O99 LONG BEAGH ROAD. OCEANSIDE, I. I., NEW VORK GENTIEMEN: Without any obligotion on my part, kindly send me the following:

PREGISE CAIALOG
NAME OF DISTRIBUTOR NEAREST ME
ADDEESS
CITY.

AMATEUR

Construction

The photographs show construction details of the heterodyne frequency meter. The entire instrument is built into an aluminum utility box 7 inches long, 5 inches high, and 3 inches deep. Considerable reduction in size is possible by the use of smaller components.

Tuning capacitor C3, calibration trimmer C2, and the r.f. coil assembly are mounted directly to the box (see rear-view photo). The mixer and a.f. amplifier components are mounted between the turret terminals of a Useco $21 / 2 \times 2$ inch terminal board. Placement of these parts will be seen in the photo of the audio subchassis. Oscillator transistor V1, capacitor C1, and resistor R1 are mounted on a small bakelite terminal strip attached to the front of the main tuning capacitor C3, and are not visible in the rear-view photo.

Base resistors R1 and R2 are the only critical components. Their values vary with individual transistors and must be selected for the particular transistors used. The resistance values given in Fig. 2 worked satisfactorily in the author's instrument and will be good starting values from which to begin tests. Resistor R1 should be selected for lowest collector current which will permit strong oscillation over the entire range of the tuning capacitor. For this test, connect a multirange d.c. milliammeter temporarily in the lead from L1 to the negative terminal of the battery. Note the indicated collector current for each experimental value of R1. To test for oscillation, touch the collector lead of the transistor with the finger. The milliammeter should change reading vigorously. A slight change shows weak oscillation. After each change of R1, make this check at each setting of C3.
To adjust R2, insert a pair of $2,000-$ $3,000-\mathrm{ohm}$ headphones into the jack. Feed in an r.f. test oscillator signal (500 to 1000 kc) at the signal infut terminals, and obtain a beat note by tuning C3. Using this beat note, adjust the value of R2 for loudest undistorted signal. Remove the headphones and plug a d.c. milliammeter into the jack. The current reading ordinarily should not exceed I ma. Choose R2 for the lowest current which gives a loud signal with low background noise.

Calibration

The best final calibration will be obtained with a 100 -kc frequency standard. However, follow these steps for the initial calibration: (1) Feed a 500ke signal to the signal input terminals. (2) Set the main tuning capacitor to its full-capacitance position. (3) Plug headphones into the jack and adjust the calibration trimmer C 2 for zero beat. The C3 dial now may be marked 500 kc at this point. (4) Substitute a $100-\mathrm{kc}$ frequency standard for the signal generator. (5) Reset C2, if necessary, to establish a more accurate zero-beat with the standard. (6) Tune C3 slowly from this setting until another standard frequency point is brought in on zero-beat.

If you could advertise nationally, chances are you'd do just what CBS-Hytron
is doing for you. You'd tell the world in 4 and P0su
Half-page advertisements will appear in LIFE Sept. 28, POST Oct. 3, LIFE Oct. 19, POST Oct. 31, LIFE Nov. 16, and POST Nov. 28. Reaching over 28,583,290 readers!
that you promise quality TV and Radio service, parts, and tubes . . . and
at fair charges. And that's just what CBS-Hytron is doing for you with
advertisements like these.

You'd identify your service repair
These are just some of your Certified Quality Service advertisements. They sell you . . . and without a lot of sell for CBS-Hytron, although CBS-Hytron gladly pays the bill. Why? Because as we build public confidence in Certified Quality Service, we build greater faith in you and more business for you. . . our customers.
shop as the one people are reading about in the magazines. You'd use this
above all you'd use these Certified quality service tags.
They tell your
This plan goes all the way to do the job. When you use these Certified Quality Service tags you're putting right into your customer's hands convincing proof Proof that Certified Quality Service means more for your customer's money.

customer he is getting more for his money when he calls your service repair
shop . . . because you Certify the quality of service, parts, and tubes . . . and
at fair charges. Yes, by using all this material, and more to come, you
cash in on your big Certified quality service advertising campaign.

It contains all the material
Make the most of your big Certified Quality Service advertising campaign. Be sure you have all the facts . . . and all the material you need. Get this sales promotion kit, today!
you need to identify you as a Certified quality service dealer. Ask your

CBS-Hytron distributor for special deal. Or use coupon to order direct.

All-Purpose Crystal менотиокв

MODEL 777
List Price $\$ 21.00$
MODEL 777s
(with switch)
List Price $\$ \mathbf{2 3 . 0 0}$
(Price includes
cradle
for mounting
on stand)
Its Versatility and
"Hand-a-Bility" make it on ideol low-cost

LIGHT! The new "777" Slim-X Micro. phones are rugged little microphones weighing only 6 ounces! They are designed for good-quality voice and music reproduction. Their versatility and "hand-a-bility" make them ideal for use by lecturers, announcers, instructors, and Hams; for audience participation shows; carnivals; panel and quiz shows; and use with home-recorders. When mounted on either cradle or swivel, the " 777 " can be removed in a flash (no tools necessary)-simply by lifting it out of the holder. This makes it an ideal "walk-around" hand-held microphone. TECHNICAL INFORMATION: Smooth frequency response- 60 to 10,000 c.p.s.; special-sealed crystal element-for long, operating life; high impedance; 7^{\prime} single-conductor cable, disconnect type. Dimensions: (Microphone only) Length, 4 $1 / 2^{\prime \prime}$; Diameter 1". Finish: Rich satin chrome overall.
NOTE: Lavalier cord for suspension of Microphone around neck is included.

ACCESSORIES FOR "777"

MODEL S38 STAND is a heavy die-cast bane. Includes metal screw machine atud for connecting microphone adaptor to stand hase.

List Price: \$3.30
MODEL A25 SWIVEL ADAPTOR features a long-life, high-quality swivel connector. Is lincd with a long-life nylon sleeve-for noise-free and acratch-free insertion and removal of microphone.
List Price: $\$ 5.50$

Mark this point 600 kc on the dial. (7) Repeat at each standard spot frequency, marking the dial $700,800,900$, and 1000 kc accordingly. If the frequency standard is equipped also with a 10 -ke multivibrator, 10 -ke points may be located and marked between adjacent 100 -kc graduations on the dial.

It is advisable to check against a standard-frequency source before be-
through the phones for its collector current. When using a visual zero-beat indicator, such as an oscilloscope or meter, complete the d.c. collector path by connecting a 2,000 -ohm resistor in parallel with the jack.

When checking a transmitter (and some oscillators), satisfactory coupling into the frequency meter is obtained by using 1 or 2 feet of stiff wire.

Fig. 2-Circuit of the transistorized 50 -kc to 30 -mic heterodyne freqmeter.

Materials for frequency meter

Capacitors: I-25 $\mu \mu \mathrm{f}$, air trimmer; I-365 $\mu \mu \mathrm{f}$ single-section tuning capacitor: $1-50^{\circ}$, $1-200$ Hpf midget mica or ceramic; 1-.001 hf. mica or ceramic; $1-1.0 \mu \mathrm{ff}$, 200 volts, metalized paper. Miscellaneous: 2-CK722 transistors: I-CK705 germanium diode; I-s.p.s.t. toggle switch; 2-resistors
ginning use of the heterodyne frequency meter at any subsequent time. A single spot check will suffice. A rapid method is to set the dial to $1000 \mathrm{kc}(1 \mathrm{mc})$ and, with the 100 -ke standard feeding into the signal input terminals, adjust trimmer C2, if necessary, to re-establish exact zero-beat. This compensates for any frequency shift due to transistor temperature characteristics or to battery variation.

Application

Always use high-resistance magnetic headphones (minimum 2,000 ohms). Crystal phones will not work, because transistor V2 relies upon the d.c. path

Abstract

(see text); 1-3:1 interstage a.f. transformer (U.T.C type $50-2$ or equivalent): 1-j. W. Miller broad cast antenna coil type 20A; i-miniature 15 -yolt battery (Burgess U10 or equivalent); 1-aluminum batility tine box. $7 \times 5 \times$ inch 10 posts (USECO or quivalent) I tuning dial hookup wire, hardware.

Longer ones may cause interference on nearby broadcast receivers. Ordinarily, such interference is not created because of the low power output of the transistor oscillator stage.

Remember that a relatively low input impedance appears at the SIGNAL input terminals. This is an important factor when the frequency meter is used to calibrate an r.f. oscillator or signal generator connected to those terminals. Usually, the only mischief is the requirement of a stiffer signal from the oscillator under test. But the situation is not much worse than feeding a signal generator into the antenna coil of a receiver.

END

INDUCTANCE MEIER USES HETEROOYNE PRINCIPLE

TThere are a number of ways of measuring the inductance of a coil. The most common of these are:

1. Shunt the unknown inductance with a capacitor and then use a griddip meter to measure the resonant frequency of the combination. Calculate the inductance from the formula for resonance.
2. Use an inductance bridge.
3. Measure the reactance at a known frequency, then calculate the inductance from the reactance formula.
This can be done by connecting the inductance in series with a resistor across a signal generator. The voltage drop across the resistor gives the circuit current. By measuring the voltage drop across L, and knowing the resistance of L, its reactance can be computed.
4. Insert the inductance in the circuit of a L-C oscillator. Measure the operating frequency, then calculate the inductance from the resonance formula.
A novel adaptation of the fourth method uses the heterodyne principle. The unknown inductance is connected in parallel with a standard capacitor in a transitron oscillator. The frequency of the transitron is measured by heterodyning it with the signal from a calibrated signal generator. The inductance of the coil in henries is then calculated from the formula:

$$
L=\frac{1}{(6.28 \times \mathrm{f})^{2} \mathbf{C}}
$$

where L is in henries, C in farads, and f in cycles per second.
The circuit of the transitron inductance meter-reprinted from Radio Constructor (London, England)-is shown in the diagram. The transitron oscillator V1 may be a 6 K 7 of any similar r.f. pentode with a separate pin connection for the suppressor grid. A part of the signal from the oscillator V1 is fed through a $10-\mu \mu \mathrm{f}$ capacitor to the grid of mixer tube V2 which operates as a grid-leak detector. A lowlevel signal from an accurate signal generator is fed to the grid of V2 through a $50-u \mu \mathrm{f}$ capacitor. The beat note generated by the two r.f. signals is fed to the input of V3, an audio amplifier which drives a pair of headphones used as the null indicator. A null indicates that the frequencies of the internal oscillator and signal generator are the same. Use the inductance formula or a reactance slide-rule to determine the inductance of the coil.
When constructing the unit, be sure to keep the oscillator leads short to minimize stray capacitance and to increase efficiency at high frequencies. To set up the tester, set R3 (the oscillator output control) to maximum, R1 about one-third the way up, and then adjust R2 so the suppressor is slightly negative with respect to the cathode. V1 should now oscillate when a coil is
connected across the test terminals and the selector switch is thrown to position 1.

Connect an external signal generator and tune it through its range until a beat note is heard in the phones. If a beat is not heard, vary the setting of R2 (and R1 if necessary) until the tester starts to oscillate. After obtaining a beat note, readjust $R 1$ and $R 2$
tance bridge. Measure the internal stray capacitance across the test terminals with the power off, S1 in position 1, and C1 temporarily disconnected from the circuit. Add the measured internal capacitance to the capacitance of C 1 and C 2 when computing the inductance of the coil. C1 and C2 should be high-stability type capacitors having a tolerance of 2% or better.

Schematic of inductance meter. 6 K 7 tube is used in transitron oscillator circuit.

Materials for inductance meter

Resistors: 1-1 megohm, 1-270,000, 1-100,000, 1-$47.000,1-1,000$ ohms, $1 / 2$ watt: $1-1,000$ ohms 5 watts with semiadiustable slider, $1-3,000$ ohms, 10 watts with semiadiustable slider; $1-250,000$ ohms, potentiometer.

Capacitors: $1-10,1-50,1-200,1-500$ uuf mica or ceramic; 1-100, i-500 $\mu \mu$ f, silver mica with tolerance of 2% or better; $1-01,4-0.1 \mu f, 400$ volts, poper: 1-25 uf, 25 volts, electrolytic.
Miscellaneous: Tubes (see text), sockets, hardware, hookup wire.
for the strongest signal. Adjust R3 until the signal is barely audible and then repeat the procedure. The sliders of R1 and R2 may now be locked in position.

For extreme accuracy, use a capaci-

The inductance meter is an extremely accurate method of determining L. The inductance being measured is allowed to operate at its natural frequency. The accuracy of the signal generator limits accuracy of the final result. END

COMPARISON PROVES सIGO OFFERS GREATEST V-0-M volues!

GET the MOST for your money - Before you buy, see chart below!
World-renowned EICD VOLT-OHM-MILLIAMMETERS

* \# 536 KIT \$12.90. Wired $\$ 14.90$ \# 526 KIT (with 1\% multipliers) only $\$ 13.90$. Wired $\$ 16.90$

VERIFY AT YOUR DEALER'S	EICO	Co. A	¢ 0.8	co. 6	Co.D
	$\begin{aligned} & 12,00 \text { up } \\ & \text { an } \end{aligned}$	all Over 524.00			EfCO $\begin{aligned} & \text { price } \\ & \text { conge } \\ & \hline \end{aligned}$
31 ranges?	YES	No	No	No	No
Full-size 3 -inch meter?	YES	Yes	Yes	Yes	No
400 ua sensifivity?	YES	Yes	Yes	Yes	No
Zero to 1 w . range on both $A C$ and $D C$?	YES	No	No	No	No
5000 v . range on both $A C$ and $D C$?	YES	Yes	No	Yes	No
$\begin{aligned} & \mathrm{AC/DC} \text { sens } \\ & 1000 \Omega / \mathrm{v} \text { ? } \end{aligned}$	YES	Yes	Yes	Yes	No
$\overline{D C}$ and $A C$ Current Ranges?	YES	No	No	No	No
In KIT and Wired Form?	YE5	$\begin{aligned} & \text { Wired } \\ & \text { Only } \end{aligned}$	$\begin{aligned} & \text { Wired } \\ & \text { Only } \end{aligned}$	$\begin{aligned} & \text { Wired } \\ & \text { Only } \end{aligned}$	$\begin{aligned} & \text { Wired } \\ & \text { Only } \end{aligned}$
Lawest cost in the Industry?		No	Na	No	No:
	$\begin{aligned} & \text { * See } \\ & \text { Above } \end{aligned}$	All over \$2400			Hico price ponge

Write for FREE Catolog MC-10 \& name of lacal dealer.
ELECTRONIC INSTRUMENT CO., Ine 84 WITMERS STREET. dROOKIYN $11 . \mathrm{N}$ Y

NOW! Famous COYNE SCHOOL Trains You AT HOME for television RADIOELECTRONICS!

KEEP YOUR PRESENT JOB! LEARN IN SPARE TIME!

Now, the famous Coyne School, with a background of over half a century of practical training experience, brings practical HOME TRAINING IN TELEVISION, Radio and Electronics RIGHT TO YOU-Training up to the standards that have made Coyne famous. 100 easy-to-understand dessons take you step-by-step through TV construction and repair, AM and FM Radio testing instruments, circuits, trouble-shooting, servicing, even UHF and COLOR-TV! Practical JOB GUIDES with each lesson show you how to do actual servicing jobs so that early in the course the training can start making money for you.

PRACTICAL TRAINING AT SURPRISINGLY LOW COST! We don't send you-and charge for-a high sounding list of "put-together" kits and parts that you many never need or use, but that could easily double the cost of the course. You don't need them to master Coyne Home Television Training. You get and pay only for the practical training you need . . Not an old Radio Course with Television "tacked on". Every lesson deals with practical Television-Up-To-Date Television including the latest in Transistors-all made easy to understand. No radio background or previous experience needed, AND it costs you half of what you would expect to pay.

GET FULL FACTS NOW!
Get in on the ground floor of Television, the booming, big-pay opportunity field of the century. Send coupon for full facts about sensational Coyne Television Home TrainingNo salesman will call-No cost or obligation.

RUSH THIS COUPON NOW:

COYNE SCHOOL, Dept. 73-HT4
 500 S. Paulina St., Chicago 12, III.

Please send me, without obligation, full focts on your low-cost practical home training in Television.

Name

Address..

Valuable 3-way aid for Auto Radio Repair Men!

AUTOMATIC HEAOLLGHT DIMMER

Electionic headight dimmer installed. Oncoming headlights actuate dimmer.

By JACK MARLEY

THE automatic headlight dimmer has always intrigued me, and I decided to build one, planning to use low-cost parts. It cost even less than I had expected, and provided interesting instruction over several pleasant hours.
All parts used were stock items, except the $931-\mathrm{A}$ phototube and the resistor network. The 931-A can be obtained from any radio supplier and the resistor network may either be purchased from a United Mctors radio parts distributor or made up of 220 ,000 -ohm $1 / 2$-watt resistors. The network is very compact and costs only $\$ 2.25$.

Several tries with other tubes showed me that a multiplier type is the best phototube to use. Another unit built
around an 868 gas phototube lacked sufficient sensitivity. The gas type, being a single-stage unit, does not have sufficient current flow. The 931-A takes a submagnal $11-\mathrm{pin}$ socket. If one isn't available, use an Amphenol 77-MIP11.

The phototube operates with approximately -520 volts on the cathode, which gives ample sensitivity at all times. The tube may be covered with light yellow cellophane as an aid in filtering out moonlight. Care must be taken not to use too many layers or the sensitivity will deerease.

The -520 volts on the phototube cathode and the 220 volts on the 6 C 4 plate are obtained from separate vibrator power supplies. In building this (continued on page 102)

Front view of dimmer. The power cord to the 931-A is located at extreme right.

Here's how to SAVE MONEY ON INSTRUMENTS!

V. how to do faster, better resting with fewer instruments
. how to increase the usefulness of
your present instruments your present instruments
how to choose the right instrument for each job
 stand instrument
operating princi-
oples ples
instrument readuate
insto instrument read-
ings and put them to practical use

BASIC ELECTRONIC TEST INSTRUMENTS

By rufus p, turner
254 poges, 171 illus., Price $\$ 4.00$
The instrument book written especially for SERVICEMEN • AMATEURS

- EXPERIMENTERS

\star
Here, at last, is a book that can save you money on instruments and help you use your present instruments lots more etficiently! TV Over 60 instruments-from the most modern are careully described. Their uses are tully explained Valuable work-saving short cuts are outlined.
Included are complete details on simple meters for current and voltage; ohmmeters and V-O-M's: V.T voltmeters; power meters; impedance meters: capacitor checkers; inductance checkers; specialpurpose bridges oscilloscopes (this material alone is worth the entire price of the hook to busy servicemen!); r-f test oscillators and signal generators: frequency measuring devices; audio amplitier testing devices, ${ }^{-f}$ signal tracers and tuhe testers. Among other things, BASIC ELEC TRONIC TEST INSTRUMENTS is a complete training course in the latest instruments including gric- TV linearity pattern sween and marker generators, square-wave generators and others.

SEE WHAT IT CAN DO!

Tou are shown new uses for VOM's. "scones, signal generators and other old standhys. You learn how easy it is to
extend the range of many old instruments: how power extend the range of many old instriments: how power fing; how a useful and accurate bridge can be built from a comitination of famfliar general-burpose instruments: how to calculate shunts and multipliers; How to measure r-f 1 m nedance with a simple T-network: how to measure in-
dutunce and capaciance with a krid-dip oscillator and
 for 10 days at our risk! Send coupon today.

ANOTHER NEW TRIO PLANT TO SERVE YOU! A modern, new addition to TRIO's present facilities adds $\mathbf{2 4 , 0 0 0}$ sq. f. of manufacturing space. A new laboratory, not illustrated, has also been added.
TRIO has on hand, or in the process of shipment from the mills, 60 carloads of aluminum to meet increased production schedules.
Despite these facts, we are not sure we will be able to fill all orders. We suggest you order now.

Outperform on ALL Channels!

Gain that is greater by far than that offered by the best of the collinears, conicals and multielement Yagis, is now offered by famous TRIO ZIG-ZAG antennas!
A sensational new TRIO development - a new re-entrant type impedance matching network - makes possible this tremendous im. provement by providing an almost perfect impedance match to the line on every channel! Unlike isolation filters, the ZIG.ZAG reentrant network has NO insertion loss!
A single feed-line is used, even when stacking for all-channel operation!

Extensive tests were made in all sections of the country, in every conceivable type of terrain. Results prove that the ZZ12L, $\mathrm{ZZ1} 6 \mathrm{H}$ combination, with their associated re-entrant networks, provides the finest all VHF channel, single lead-in operation yet obtained.
Current shipments of TRIO ZIG-ZAG an. temnas include the complete network.
For channels 2 thru 6 or channels 7 thru 13 separately, or combined for channels 2 thru 13, TRIO ZIG-ZAG antennas are the hottest ever designed
New descriptive literature available.

HIGH GAIN TRIO UHF ANTENNAS
 UBT BOW-TIE SERIES (4-stack, in actual tests, bests all other types)

The popular TRIO 4 -stack bow-tie, in actual field tests, outperformed all other types because it takes advantage of the fact that UHF signals are composed of closely spaced layers of different signal strength. Because of its vertical height, the TRIO 4stack taps one or more of these varying high density layers at all times offers consistent high gain day in and day out.
TRIO bow-ties offer high forward gain without sacrificing excellent front-to-back ratio and good line
match. Adoption of reflectors using individual horizontal elements eliminates vertically polarized noise pickup so often encountered with grid, mesh and solid type reflectors.
TRIO bow-ties are also available in 2 -stack and single stack models. The 4 -stack and two stack come assembled on 4 foot and 3 foot aluminum masts respectively, with phasing harness installed. The single bay model is furnished assembled on a 2 foot aluminum mast.

6415 Ravenswood,
Chicago 26, Illinois

Ordinary horn relays handle the full headlight current. These may be purchased from any auto-parts store.

The mounting for the main unit and the eye unit may be placed at any convenient location in the car. The plate relay must be horizontal in order to keep car vibrations from affecting it, and the eye unit must be so placed that little extraneous light will strike it.

The phototube itself was mounted in a metal container found in the shop junk box. The container was grounded to eliminate shock.

Operation

The cathode of the multiplier type phototube emits elections when light strikes $i t$. The resultant current flows through the 6 C 4 grid resistor, developing a negative voltage at the grid of the 6 C 4 , causing the tube to be cut off. The plate relay is de-energized, which in tuin de-energizes the highbeam power relay and energizes the low-beam power relay to dim the lights.

When an oncoming car has passed, or when the car leaves a lighted area, current flow from the 931 -A drops to a value which will no longer keep the 6 C 4 cut off. When this happens the plate relay armature is pulled down and the high-beam power relay is re-energized. The voltage drop across the 6 C 4 grid resistor was 60 , with the $931-\mathrm{A}$ under light. All voltages were measured with a v.t.v.m. The 2-megohm potentiometer is a high-voltage threshold control which is adjusted so that the phototube will just recover to high beam after passing an oncoming cax. This control also compensates for bright moonlight nights.

Connecting the unit to the original car wiring as shown in Fig. 1 permits the driver to signal an oncoming car with a flick of the floorboard dimmer switch.

Fig. 2 is the diagram of a hold cir-

Note horizontal mounting of plate relay.
electronic dimmer, old auto radio transformers were used as an economy measure. All returns are made to the 6 -volt bus so that the unit will work with either polarity-type battery system. New vibrators should be used, since a variation in voltage will affect the sensitivity to light. Select the buffers with the aid of a scope to insure long vibrator life. The Radiart vibrator manual lists procedures for checking buffer capacitors. C1 and C2 should be matched to T1 and T2 with an oscilloscope.

The 10,000 -ohm s.p.d.t. plate relay used in the 6 C 4 plate circuit is not too critical. However, it is well to be sure that the relay used can be closed by the 6 C 4 plate current. The builder should be sure to ground the relay armature.

Federal
 MINIATURE SELENIUM RECTIFIERS

Federal-the original miniature-is saying goodbye to gray. The new bloom is "Rectifier Red". . . a striking color that instantly tells servicemen they're getting the rectifier efficiency and long life that created tens of millions of profit opportunities for radio-TV servicing . . . tells them they're getting the quality that keeps Federal miniatures the best-seller in America's vast and growing rectifier replacement market !
Look for "Rectifier Red"...get the performance that clicks... the replacement profit that stichs! See your Federal Distributor for Federal miniatures in handy 8-unit kits . . . in quantity lots . . . or in individual packages sold through Federal's self-service rectifier dispenser... on hundreds of counters! See your "FTR"

Distributor now, or write to Dept. F-763.
"America's first and largest manufacturer of selenium rectifiers"
Federal © Telephone and Radio Company

100 KINGSLAND ROAD, CLIFTON, N.J.

In Canada: Federal Electric Manufacturing Company, Lid., Montreal, P. Q. Export Distributors: International Standard Electric Corp., 67 Broad St., N. Y.

104

MOTE TMESE utome quality features

the new wall baffle by utah

The new, luxurious looking UTONE wall baffles will complement the interior of any restaurant, church, school, home, club, tavern or factory wherever speaker housing is needed.

The quality and construction of Utone wall baffles is of the finest, the finest woods matched by the fine production skill of Utah-a pioneer and leader in the sound field for over 30 years.

Utone wall haffles are available in three beautiful finishes and four versatile sizes-Genuine Honduras Mahogany-in red or lorown finish, handsome limed oak and natural unfinished woorl. Models in 6, 8, 10 and 12 inch sizes.

Utone bafflea are also available for delivery complete with mounted speakers.

CONSTRUCTION

cuit later added to the original unit to increase its sensitivity when the lights are on low beam. This keeps them from flicking up and down frequently during twilight hours. By adding another relay as shown, you can now speed the return to high beam by pressing the dinmer switch to high beam and then back to automatic (low) position.

The author has used this unit for approximately four months with success and no component failures. No bugs were encountered in building this unit other than the usual ones you run into in everyday servicing.

Fig. 2-Additions for more sensitivity.

Materials for electronic dimmer

Resistors: $10-220,000$ ohms, $1 / 4$ watt, or use General Motors printed network assembly No. 5943524: 1-3.3 megohm, $1 / 4$ watt; 1-1 megohm, $1 / 2$ watt; 1-2 megohm potentiomete
Capacitors:(Paper) 2-buffer capacitors, 1,600 volts, matched to power tronsformers with scope; 1-. 01 uf 600 volts; $1-.05 \mu f, 1,600$ volts; $1-0.5 \mu f, 200$ volts. Electrolytic) 1-8-8 $\mu \mathrm{f}, 450$ volts.
Miseellaneous: 2-auto radia power transformers; 2-4-prong nonsynchranous vibrators; 1- 10,000 ohm s.p.d.t. plate relay; 2 -automotive-type horn reloys; 931 A multiplier-type phototube; 1-5FE 9 fuse; sockats; wire: ossorted hordware.

Building this electronic dimmer gives its constructor valuable experience in and information on the principles of servicing automatic headlight dimmers which may prove to be very useful in their repair as the units become more common. The General Motors Autronic Eye is a model now in popular use.

We may see the day when all cars will have an electronic dimmer as standard equipment.

END

Learn practical, professional type TV Servicing without leaving your present job. Included are money-making extras such as set conversion, master antenna lustallation, UHF-TV, field scrvicing short cuts. You can start earning Television money
after first few lessons. You learn to test. trouble shoot and after first few lessons. You
repair all types of TV sets.

HERE'S HOW YOU GET EXPERIENCE!

You train on a large screen, modern TV recelver, Purntshed mith the course and yours to heent Δs an optional beature you can get two weeks actual experlence with Chicago's largest In-
dependent serviclng organization. You learn by doing! Age is no barsier. Many students are over 40 ? ACT Now no barster. Many sudents are over
FREE Catalog and SAMPLE LESSO ioday
TV COMMUNICATIONS INST,
205 W. Wacker Dr., Dept. RE-22
Chicago 6, Ill.

TELEVISION COMM President | 205 W. Wacker Dr.. Dept. RE-22, Chicago 6, III. Rush FREE Catalog and Sample Lesson. I am not obligated. Salesman will not call. i Name...
Address
City......
\square BEGIN
Address.

\square BEGINNERS.check herefor Pre-TV Radiocourse.

TRAIN AT HOME FOR UHF-TV AND
THITVSOM
SERVICING

Technical specifications

- Frequency Range: 0.5 cycles to 700 KC , down 3 db .
- Accelerating Potential: 1775 Volts (high intensity), provides very sharp focus.
- Square Wave Response: Flat, 60 cps. to 100 KC , with less thon 1% tilt, less than 2% overshoot.
- Dual fuse: $B+$ is fused and the line is fused.

Fused B+ provides protection against transformer damoge. This is another HICKOK exclusive feature.

- Amplifier: Push-pull, vertical sensitivity 20 MV RMS per inch.

Horizontal, 30 MV RMS per inch.
Vertical Input Impedance: 15 MMF, 2.2 Megohms.
Horizontal Input Impedance: 52 MMF, 0.1 Megohms.

- Sweep Oscillator Range: 18 cps . to 50KC.
- Withstands shock, vibration, and humidity. CRT is shock-mounted, and external connections to CR Tube are provided.
- Blue hammertex steel case.
- $13^{\prime \prime}$ H., $17 \frac{1 / 4 " \text { D., } 95 / 8^{\prime \prime} \text { W. } 23 \text { lbs. net. }}{}$

Write for detailed information or see your MICKOK jobber today.

106

Sangamo combines an amazing new molding compound with a new impregnant to bring you a completely new paper tubular capacitor - developed by request to meet rigid specifications so tough that no previously existing paper tubular could approach them.
Thousands of Telechiefs have been tested under actual service conditions... have proved their ability to outlast and outperform all other tubulars.
The new molding compound, Sangamo Humiditite, greatly
lengthens capacitor life. It has been proved, by severe tests, to give the best seal against moisture of any molding compound in the industry.
The new Sangamo impregnant holds rated capacity under all conditions and makes the Telechief really rugged.

Because we know that service men want only the best replacement parts-the new Telechief has been released to the service trade. Get in touch with your Jobber.

OVER 50,000 TECHNICIANS have learned

HOW TO GET
 THE MOST OUT OF BASCC TEST EQUPMENT

SANGAMO ELECTRIC CO. Marions
SANGAMO ELECTRIC CO. Hunois

CONSTRUCTION

PHONO OSCILLATOR

The simple phono oscillator shown in the diagram is the best I have ever used. It has comparatively few parts and is capable of high-quality reproduction with a high percentage of modulation. The quality of reproduction of the over-all system is limited by the receiver.

Materials for phona oscillator
Resistors: $1-1.5$ megohms; $1-100,000,1-56,000$ I-47,000, $1-8,200$, ohms, $1 / 2$ watt; $1-2,700$ ohms, 2 watts; 1-I-megohm potentiometer, oudio taper, Capacitors: 270 , $1-100 \mu \mu \mathrm{f}$, mica or ceramic; 2-20 $\mu \mathrm{f}, 250$ volts, 270, I- 100 uhf, mica or ceramic; 2-20
electrolytic: $1-380$-uuf mica trimmer,
electrolytic; 1-380-puf mica trimmer,
Miscellaneous: 1-broadcast oscillator coil; IMiscellaneous: 1-broadcast oscillator coil; 1selenium rectifier, $150-160$ volts r.m.s.: I-half-wave power transformer, $130-150$ volts at $25 \mathrm{ma}_{1} 6.3$ volts of $0.6 \mathrm{amp} ; 1$-phono input iack; I-6AV6, 1 -I2AU7. Sockets, chassis, hookup wire, hardware.

The circuit consists of a 12 AU 7 oscillator and buffer and a 6AV6 speech amplifier. The buffer is essentially a grounded-grid r.f. amplifier with the audio signal applied across the $47,000-$ ohm resistor between grid and ground. The r.f. signal is fed into the cathode of the buffer by tying it directly to the cathode of the oscillator. With an 8-foot antenna, the oscillator produces a good noise-free signal at 50 feet. The coil and capacitor combination may be any which tunes to the broadcast band. A standard tapped broadcast oscillator coil and trimmer is used. The oscillator is of the Hartley type and will operate well in the broadcast band. The buffer serves not only as a mixer of the audio with the local r.f. oscillator, but as its name implies, it will act as a buffer between the antenna and the oscillator, otherwise, changes in the antenna location would reflect impedance into the oscillator circuit and change its operating frequency, causing drift.-James R. Kaness

A television owner named Bright Who considered repair men a blight
With his wife made a bet
He could fix his own set
And they both went TV-less that night
RADIO-ELECTRONICS

Only ALLIANCE makes the fully automatic rotator.

Pointer shows right where antenna
is aimed. Highly accurate!

Over $1,000,000$ satisfied viewers suggest that Alliance is the line for you. Now, completely restyled with new streamlined beauty in appearance. Redesigned inside too, for even better performance, easier installation. Only Alliance has the fully automatic rotator.
And Alliance gives you the pre-sold line . . . this Fall through more powerful advertising than ever... on TV... in newspapers . . . and in magazines to help you cash in on UHF and VHF. Better get your order in right now for the new model Alliance Tenna-Rotors.

Model U-83, fully autamatic. Completely restyled and completely redesigned. Set it and farget it. Only Alliance makes the fully automatic rotator.

Alliance Manufacturing Co.
 ALLIANCE, OHIO

The \#630 TV RECEIVER remains unmatched for quality and performance * RCA designed and developed this set quality-wise not price-wise - The original $10^{\prime \prime}$ set retailed at $\$ 375.00$ • Subsequent TV sets serve to prove the sacrifice of quality for price - What better proof can there be of its superiority than the fact that it is the choice of TV engineers and TV technicians! Herewith we offer you - YOUR BEST BUYS IN TV! All you pay is the price shown . . . Excise taxes have already been paid by us.

With a \#630 SUPER DELUXE 31-TUBE TV KIT including your favorite U.H.F. Station. Engineered in strict adherence to the genuine RCA \#630 plus added features . . . OPERATES $16^{\prime \prime}$ to $24^{\prime \prime}$ PICTURE TUBES • . . FULL 4 MC BANDWIDTH • . . CASCODE TUNER . . . COSINE DEFLECTION YOKE . . . LARGER POWER TRANSFORMER • . . KEYED AGC • . . 12" SPEAKER - . UNIVERSAL MOUNTING BRACKETS . . . CONDENSERS and RESISTORS at rated capacities and tolerances. You receive a COMPLETE SET of PARTS and TUBES, everything needed is included (less wire \& solder). All I.F. Coils and Transformers are factory pre-aligned and tuned. You will enjoy building it with "LIFESIZE easy to follow step-by-step ASSEMBLING INSTRUCTIONS" included with each KIT.

Brooks LTE-SMEE Edition \#630 TV KIT EUILDER-SET OF INSTRUCTIONS BUILDING YOUR OWN \#630 TV CHASSIS is now simplified with this COMPLETE SET OF BUILDING \& WIRING INSTRUCTIONS. Covers all $=630$'s, from the RCA $10^{\prime \prime}$ SET to the latest SUPER DE LUXE 31-tube 16^{-10} to 24° RECEIVER.
EVERYTHING AT A GLANCE-LAYOUT CHARTS show chassis and conmonents in actual LIFE.SIZE with instructions alongside the illustrations.
GUESSWORK IS ELIMINATED by specially prehared SCHEMATIC DIAGRAMS, LOCATION GUID. ANCE, CODE CHARTS, ALIGNMENT PROCEDURE and TOP AND BOTTOM PHOTOGRAPHS OF A COMPLETED CHASSIS (assembled from these instructions) elearly showing wlacement of each comnonent.
INDISPENSAELE for BUILDING, CONVERTING or TROUBLE SHOOTING any \#630 TV SET.

Postpaid

SPECIAL \# 630 TV PACKAGE

- hints for better pictures on youk b3oty - G3OTV DIAGRAM WITH MODIFICATIONS - ILLUSTRATED TV CONVERSION mANUAL - PULSE KEYED AGC CIRCUIT DIAGRAM - RMA RESISTOR \& MICA CODE CHARTS
$\$ 1.00$ Postpaid

\#630 SUPER DELUXE TV CHASSIS With-U H F Leanse meter

COMPLETE READY TO PLUG IN AND PLAY - Similar in characteristics and features to the TV KIT above - - . Manufactured especially for us by Regal Electronics Corporation - - No efforts or expense have been spared in workmanship or materials, to make this \#630 SUPER DELUXE TV CHASSIS the Best obtainable for fringe areas, clarity and all-around-performance, regardless of price. Customers report reception better than 200 miles . . Each Set is factory aligned and air-tested - . . All parts carry the RMA three month guarantee - . Our mass volume of business on this CHASSIS lnumbering thousands of pleased customers) now . . makes it passible for us to reduce the price to
\$157.97

TWO \#630 TV SPECIALS ${ }_{v}^{\text {i }}$ TECH-MASTER with - U.H.F.

TECH-MASTER Model C-30 TV CHASSIS, COMPLETE READY TO PLUG IN AND PLAY - The Model C- 30 has refained the autsfanding characteristics of the RCA- 630 circuify, namely the four-stage, full bandwidth picture IF sfrip and the threestage FM sound section - . In addition, the latest innovations in synchronization and sweep circuits have been incorporated to produce a custom-quality receiver assuring outstanding and trouble free performance •
30 tubes $12^{\prime \prime}$ speaker - . special at 30 tubes $12^{\prime \prime}$ speaker • • - special at

TECH-MASTER Gold Medal Series Model 2430-9 TV CHASSIS, COMPLETE READY TO PLUG IN AND PLAY - The last word in TV achievement • - 90° deflection for perfect operation of all 24" and 27' recfangular and $30^{\prime \prime}$ round picfure tubes • - Ideal for wall or custom-cabinet mounting • • - Detailed technical data mailed on request, however with the knowledge that this CHASSIS is a 30 -tube \#630 with both TECH-MASTER'S
and OUR guaronfee, you need not hesitate sending your order in now.special at

CUSTOM-BUILT CABINETS : \#630 Anomill TV SETS —FROM FACTORY TO YOU

5 LEADING STYLES in genuine mahogany or walnut (blond 10% extra). " " Ready drilled for any \#630 TV chassis and cutout for any $14^{\prime \prime}$, $16^{\prime \prime \prime}$, $17^{\prime \prime \prime}$, $19^{\prime \prime}$ $20^{\prime \prime}$ or $21^{\prime \prime}$ picture tube at no extras in price. © © Also supplied with undrilled knob panel for any other TV set. © - E EVERYTHING NECESSARY for an eas
perfect assembly is included. Each cobinet is delivered complete as pictured with mask, sofety glass, mounting breckets, backboard backeup hardware and perfect assembly is included. Each cabinet is delivered complete as pictured with mosk, satety glass, mounting brockets, backboard, bockcup, hardware and ossembling instructions. - Each cabinet is shipped in an air cushioned carton from FACTORY to YOU.

The Vogue
Most Popular
Table Model.

562.54

The MANHATTAN

$\$ 59.37$

The MAYFAIR
Exquisitely modern, with an ele-
gance of simplicity in styling.

1-40", W-26", D-25"
$\$ 98.56$

The PLYMOUTH
Choice of interior Decorators

 $\$ 105.48$

The TOWN \& COUNTRY

MANHATTAN for 24° or $277^{\circ} \mathrm{CRT}$
$\mathrm{H}-461 / 2^{\circ}$, W-273

MOST desirable 5 sizes-ALL RECTANGULAR . . . BRAND NEW in Factory Sealed Cartons-With a Full Year Guarantes

SPECIAL for SCHOOLS \& TECHNICIAMS . . . \# 630 TV KIT under $\$ 100-$

 Top Quality Components suitable for \#630 and Many Other TV Sets and Equipment

THIS OFFER MAKES TV HISTORY ... nover ever so low a price. never over such high quality
Quatity and improvements In components that witi onable the finished chassis to operate $10^{\prime \prime}, 121 / 2^{\prime \prime}$ and certain $16^{\prime \prime}$ picture tubes of This STANDARD KIT used in the famous RCA $\# 630$ 29-tube chassis. includ. ing all tubes. speakers. rosistors in correct 5%. 10%. 20\% tolerances. the now Cascode Tuner and the Brooks
LIFE-SIZE Instructions (Iess CRT \& wire)
only . . . \$93.78

TV WIRE 2 SOLDER KIT, for any ret....... 1.49
VIDEO AND I.F. KIT, 19 items 7.84
YARIABLE CO
WIREWOUND
BRACKET AND SHIELD
ECTROLYTIC CONDE
TUBULAR CONDENSER
CERAMIC CONDENSER KIT, 28 condensers.. 3.37
MICA CONDENSER KIT. 11 candensers...... 1.38
CMINAL STRIP KIT

THE NEW CASCODE TUNER can now be installed in ANY TV set "Brooks CASCODE MANUAL" Fith schematice and eany to follow atop-by-uted only 50ϕ Potisald

Modernize a \#630 or any TV Set STANDARD CASCODE TUNER For better all around parformanee Complete with tubes, and
$\begin{aligned} & \text { Brooks CASCODE MANUAL } \\ & \text { with step-by-step instructions }\end{aligned}$
wis. with step-by-step instructio

STANDARD CASCODE TUNER, incl. tubes. $\mathbf{5 2 2 . 4 9}$ ESCUTCHEON PLATE, for tuner, 1.69
COMPLETE SETOFKNOBS, incl. decals... 1.34 COWPLETE SETOFKNOBS, incl. decals.... 1.34 POWER TRANSFORMER, 295 ma .201 Tb . VERTICAL BLOCKING TRANS. $208 T 2$. HORIZONTAL OUTPUT TRANS. 21ITI... HORIZONTAL OUTPUT TRANS. FOCUS COIL, 247 ohms, FOCUS COIL, 470 ohms.

DEFLECTION YOKE, 60° | | $202 D 1 \ldots$. | $\mathbf{2 . 9 8}$ |
| :--- | :--- | :--- |
| DEFLECTION YOKE, 60° | 202 D | | $\begin{array}{lll}\text { DEFLECTION YOKE, } 60^{\circ} & 201 \mathrm{DI} \ldots & \mathbf{3 . 4 2} \\ \text { DEFLECTION YOKE, }\end{array}$ DEFLECTION YOKE, COSine 70° 206D1.... $\mathbf{3 . 9 7}$ SOUND DISCRIMINATOR TRANS.203K1.... 1.12 1st PIX I.F. TRANSFORMER, 202 K 2

2nd PIX I.F. TRANSFORMER, $\begin{array}{ll}\text { 2nd PIX I.F. TRANSFORMER, } & 202 \mathrm{K3} . \\ \text { ist \& 2nd SOUND I.F. TRANS, } & 201 \mathrm{KI} .\end{array}$ Ist \& 2nd SOUND I.F. TRANS, 201 KI
HORIZONTAL DISCRIM. TRANS. 208T8. FILTER CHOKE, 62 ohms CATHODE TRAP COIL,
WIDTH CONTROL COIL, keyed AGC 202 K 4. WIDTH CONTROL COIL, keyed AGC I R4A
HORIZONTAL LINEARITY COIL, 201 R3... HORIZONTAL NEIIS 3rd \& 4th PIX COILS.

202LI. | 204LI... | .39 |
| :--- | :--- | VIDEO PEAKING COIL.

203 L. VIDEO PEAKING 203 L 2 VIDEO PEAKING COILS. $203 L 3$.
VIDEO PEAKING COILS. 203 L 4. VIDEO PEAKING COILS. 203 L 4. ION TRAP BEAM BENDER, double 203D3
-ION TRAP BEAM BENDER, single 203DI,

variable controls

ICTURE \& SOUND, lok ohms meg. \&

 VERTICAL \& HORIZ. 50k ohms I meg.RRIGHTNESS CONTROL, 50k ohms.
HORIZ. CENTERINE, wirewound 20 ohms
HEIGHT CONTROL, 2.5 megohms
VERTICAL LINEARITY, 5000 ohms
VERTICAL CENTERING, wirewound, 20 ohms.
FOCUS CONTROL, wirewound, 1500 ohms. HORIZONTAL DRIVE, 20 k ohms

PUNCHED CHASSIS PAN. cadmium plated $\$ 4.87$ 630-8IT, screws, nuls, rivets, washers..... 1.69 HI VOLTAGE CAGE ASSEMBLY, complete 3.73 OOLTAGE DIVIDER SHIELD \& COVER ELECTROLYTIC COND. SUB-CHASS:S SOUMD DISCRIMINATOR SHIELD DEFLECTION YOKE BRACKET DEFLECTION YOKE MOUNTING HCOD FOCUS COIL BRACKETS CATHODE TRAP COIL SHIELD CHASSIS MOUNTING BRACKETS, SEt of 4 WIDIH CONTROL BRACKET TUNER SHAFT ERACKET
FFUSE 25 OT B HOLDE

* HV RECTIFIER, SOCKET ASSEMBLY, single *HV RECTIFIER, SOCKET ASSEMBLY, double
TV 6^{\prime} LINE CORD, with both plugs
INTERLOCK SAFETY CONNECTOR
COMPLETE TERMINAL STRIP KIT, Set of 30
*AGC BRACXET \& SOCKET
- MINIATURE WAFER SOCKETS

MINIATURE MOLDED SOCKETS
OCTAL WAFER SOCKETS
CATHODE RAY TUBE SOCKET, $18^{\prime \prime}$ leads
HV KINESCOPE LEAD with clio
AUDIO OUTPUT TRANSFORMER (6K6) . 39
$8^{\prime \prime}$ PM SPEAKER, heavy alnico \#5 magnet $\mathbf{3 . 9 7}$

- 12 " PM SPEAKER, heqvy alnica \#5 magnet $\mathbf{8 . 9 4}$

ELEGTROLYTIC CONDENSERS - $85^{\circ} \mathrm{C}$
$40 / 10 / 30 \mathrm{mfd}-450 / 450 / 150 \mathrm{v} \ldots \ldots . . .$. $40 / 40 / 10 \mathrm{mfd}=450 / 450 / 450$ $80 / 50 \mathrm{mfd}-450 / 50 \mathrm{~V}$
$40 / 10 / 10 \mathrm{mfd}-450 / 450 / 350$ $20 / 80 \mathrm{mfd}-450 / 350 \mathrm{~V}$ $250 / 1000 \mathrm{mfd}-10 / 6 \mathrm{v}$
1.37
1.49
.98

H, Y,FILTER CONDENSERS - (Cortwheels)

PULSE KEYED AGC KIT

Finest, most accurote and the easiest Kit to install in a \#630 or in ony other make TV receiver impreves performance,
COMPLETE SET OF PARTS
$\$ 4.59$

THE PRICES

STANDAR TOP KNOWH BRANOS

At 14¢ each $-37,38,39 / 44,77$.
At 39¢ each - 3575, 35W4, 5Y3, 6AL43, 80, 6H6, 65Q7, 12557, 6FS, 7C5, 7F5.
At 59 \& each6K6, 65A7, 65K7, 7F7, 11723, 4525.
At 69 C each - $1 \mathrm{H} 5,105,114,175$, , $C 4$ 6C5. $6 A B 4$, GAUK, GBEG, $12 A 15$, 125 K 7 , I2SA7.50L6, 6AAC, 6AG5, 6CB6, $65 N 7$, $7 A B$, 6AB7, 35L6.50 BS , 125G7, 12ATb, 7V7.
At 72c each 354, 12AT7, 12AU7, 12BEG, $35 \mathrm{Y4}$. 14 A 7 .
At 98 c each - 1A7, IB3, ILBEA, 5V4, 6AC7
6AH6, 6AK5, 6J6, 35A5, 50 A5. ' 11726 .
TUBE CARTOHS in Lots of 100
(10% extra discount in lots of 1000
SMALL PEANUT $1 " x 1$ " $x 1 / 8$ " $\$.89$
LARGE PEANUT 1 " $x 1$ "x $x 1 / 4$ " 98
GT TYPE $11 / 4 \times 11 / 4 \times \times 3 /{ }^{\prime \prime}$ 1.06
SMALL G $11 / 2^{\prime \prime} \times 1 / 2^{\prime \prime} \times 4 / 2^{\prime \prime}$ 1.39
LARGE G $2^{\prime \prime} \times 2^{\prime \prime} \times 5^{\prime \prime}$ 1.59
EXTRA LARGE $21 / 4^{\prime \prime} \times 21 / 4^{\prime \prime} \times 61 / 2^{\prime \prime}$ 2.97
A PLAM TO SAVE YOU MONEY
PACKAGE DEALS - Eoch containing on as. sortment of the most desirable types and sizes. to enable you to get the most omount of re- of a cost of oniy $1 / 3$ than if bought separately Resistor \& cond. code charts FREE with each order
100 ASSORTED TUBULAR
CONDENSERS

\& Desirable Sizes
$\$ 15.00$ Value

Only

	${ }^{\text {s }} 3.97$
	${ }^{5} 4.74$
	${ }^{5} 6.88$
100- CONSORED MCAS	54.99
100-ASSORTED CEAMM	54.99

	100-assorese someres S 5.92

10 - Noumb burrais s2.941/4. $1 / 2,1,2$ meg. and others
11 - VOLUME CONTROLS $\$ 1.94$
$1 / 4,1 / 2,1,2$ meg. and others

BELIEVE IT OR NOT! THIS SUPERHETERODYNE RADIO

 THAT FITS INTO ANY \#630 TV SET OR CAN BE ADAPTED TO ANY TV SET with following features . . . at only $\$ 7.89$ Superb Radio Performance on all AM Radio Stations 540 to 1700 KC . Easily Installed one hole mounting. Equipped with-Automatic Volume Control . . . High Q Loop Antenna . . . Easy to read Dial . . . Automatically shuts off CRT and High Voltage. It uses the amplification of the TV Set, giving you the same grand tone on Radio as you get on TV.

NOW!! Here is the good news . . . The regular selling price is $\$ 24.95$. It is yours complete with tubes and instructions for only

RCA 12" PM SPEAKER

only 120 in stock limit 8 to a customer	$\$.42$
$50 L 6$ OUTPUT TRANSFORMERS	
2000 in stock	
first come, first served	ed each
5" PM SPEAKER (Alnico \#5) 1200 in stock case of 30999 each smaller lots $\$ 1.14$ each	
\$5.00 SAPPHIRE PHONE NEEDLE	
only a few hundred left	

8MFD-450V CONDENSER

made by top mfr. - lists for $\$ 1.35$ 12000 in stock
268 each in lots of 100
29 C each in smaller lots
Vertical Output TRANSFORMER Universal Type 10 to 1 Ratio
List Price $\$ 6.50$
Only 100 in stock
slashed to

RCA FLYBACK TRANSFORMER

Famous \#2IBTI, good for CRT tubes from $16^{\prime \prime}$ to $24^{\prime \prime}$ Schematic included only
$\$ 3.49$

1st or 2nd SOUND I.F. TRANS. Most popular type \#202KI
slashed to
59
$\underset{\text { Gegular price } 974}{ } \quad$ only 29

HORIZONTAL WIDTH COIL \#2OIR4 HORIZONTAL LINEARITY COIL E \#20IR5
only
each
WIRE-WOUND RESISTORS
TV TYPE 5300/2-500 ohms 20/2/2W
Worth 894 only 19 d

CUSTOM-BUILT AUTO RADIOS

Known Mfr. . . . Licensed By RCA 6.TUBE SUPER (8.Tube Parformance) Instalis eosily in 15 minutes. Appearance ond tone quality equal to expensive radios supplied by cor manufacturers.
FORD CHEVROLET • PLYMOUTH DODGE•STUDEBAKER HUDSON 1948 to 1953 Inclusive List Price 559.95

$$
\begin{aligned}
& \text { Any model complete } \\
& \text { ready to instoll-your price }
\end{aligned}
$$

also available in automatic tuning FORD 52.53 CHEVROLET 51.52 PLYMOUTH 1953 DODGE 1953 List Price $\$ 79.95$
Any model complete 555.96
ready to instali-Your price ready to install-Your price

MISCELLANEOUS ITEMS

ONE POUND ROSIN CORE SOLDER....... S . 59 100 WATT SOLDERING IRON 1.78 OUTPUT TRANSFORMER (6K6) 52 UNIVERSAL OUTPUT TRANS. (any tube).. . 89 OVAL ANTENNA LOOPS VARI-LOOPSTICK ANTENNA 6 FOOT LINE CORD, molded plug VARIABLE CONDENSER, 2 gang, supe I. F. TRANSFORMER, 456 kc I. F. TRANSFORMER, FM 10.7 mc EOLUME CONTROL L/S $1 / 4,1 / 2,1$ or 2 meg . 24 VOLUME CONTROL W/S $1 / 4,1 / 2$, I op 2 meg .47 famous make crystal pickup 2.44 CRYSTAL CARTRIDGE, fits most pickups. 1.42 UNIVERSAL PICKUP, 78, 45, $33 \mathrm{rPm} \ldots . . .4 .63$ PHONO MOTOR, 78 rpm , complete. PHONO MOTOR, 78, 45, 33 rDm PHONO AMPLIFIER, incl. 3 tubes TOGGLE SWITCH. DPDT AUTO VIBRATOR, 4 prong type hYtron probing tweezers hytron tube puller. HYTRON SOLDERING AID HYTRON TUBE LIFTER HYTRON PICK-UP STICK HYTRON 7-PIN STRAIGHTENER HYTRON 9-PIN STRAIGHTENER HYTRON AUTO RADIO TOOL SPRAYWAY PLASTIC SPRAY. SPRAYWAY ALUMINUM ENAMEL TV HIGH VOLTAGE PROBE. TV COLOR ELECTRIC MOTOR TV BACK CUP, recesses C.R.T. 59

Front view of probe shows calibration. Coil socket is in the recess at right.

Interior of grid-dip probe. Coil socket is extremely close to variable capacitor.

VERSATILE GRID-DIP PROBE

by I. QUEEN

FEW technicians recognize the close relationship between a grid-dip meter and a v.t.v.m. Both instruments are also useful around a ham shack and experimenter's lab. Often both are used on the same construction or repair project-one to measure frequency, the other to measure voltage. The two instruments are physically similar. Each requires a relatively low B supply (about 150 volts), a sensitive d.c. meter, and a probe. It seems wise therefore to combine them into a single unit with separate probes for each function. The same power supply and microammeter can be used for both.

Fig. 1 shows a grid-dip probe made to plug into a home-made v.t.v.m. The probe is housed in a $4 \times 4 \times 2$-inch metal box into which a 7 -lead cable can be plugged. The other end of the cable plugs into the voltmeter proper. When a.f. or r.f. voltage is to be measured, a voltmeter probe is substituted for the Fig. 1 probe.

Fig. 1-Schematic of a grid-dip probe for use with a v.t.v.m.

The grid-dip circuit shown here is simple and effective. It consists of oscil. lating circuit L-C with plug-in coil. Power for the 955 acorn tube is supplied through the cable. Since the tube oscillates at all times, grid current flows out of lead 2. This lead connects to the microammeter in the v.t.v.m. as shown in Fig. 2. When the grid-dip probe is used, an auxiliary switch removes the meter from the voltmeter circuits so it can measure the grid dip. A meter shunt
is also used. This adjusts the meter to full scale.
The probe is simple to use. First the meter is adjusted to full scale as mentioned. Then coil L is brought near an external circuit being measured. This may be a wave-meter, an r.f. amplifier tank, an antenna (through a coupling coil), etc. When the external tank resonates with L-C, power is absorbed from it. This causes a dip in the grid current. At maximum dip the unknown frequency is read off from the grid-dip calibration.

Of course the grid-dip instrument is also an excellent signal generator. Simply couple L near an r.f. receiver and listen for zero-beat. Plenty of harmonics are available. This makes it easy to calibrate the grid-dip meter. At higher frequencies, a TV receiver helps a calibration.
Fig. 3 shows a common type of voltmeter probe which can be used as companion to the grid-dip probe. The same lead numbers are used for the ground and filaments as in Fig. 1. The other two, leads 6 and 7 , connect to the v.t.v.m. tube grids.

Construction is straight-forward, but two points need explanation. The bottom of an acorn tube extends below its socket. Therefore the latter cannot mount directly on the metal box. I

Fig. 2-V.t.v.m. adaptions for use with probe.

Try a pack. If you're not satisfied, return the pack within 7 days and your money will be refunded.

besure of the lest

CORNER REFLECTOR

BO-TY

STACKED-V

There is one sure way of guaranteeing that any television set will produce the best picture that it is capable of and that is by installing an amphenol antenna. For only with an AMPHENOL quality antenna installation can the customer be assured of better TV picture quality (the electrical qualities of amphenol antennas are unexcelled) and years of troublefree service (amphenol antennas are sturdy and rugged; they are designed to perform efficiently for years).

Besides providing complete customer satisfaction in the quality of the antenna installed, the dealer has also the advantage of the completeness of the amphenol antenna and accessories line. Amphenol makes a variety of types of both UHF and VHF antennas, as well as the famous AIRCORE Tubular Twin-Lead and every necessary accessory.
added a metal shelf one-half inch below the top of the box. It holds the sockets for coil L and the 955 tube. The shelf may be mounted either with spacers or brackets.
For high frequencies, a $3 / 4$-inch diameter polystyrene coil is convenient. Be careful in soldering to the pins. More often than not the heat softens the polystyrene and ruins the coil form. 1 found the following procedure good: Saw the base off an A mphenol type 24 form (no prongs). This form fits neatly

Fig. 3-Voltmeter probe which can be used in conjunction with the probe.

Materials for probe

Resistors: 1-9.100, 1-12,000, $1 / 2$ watt
Capacitors: 1-50 uuf mica; |-| 000 ulf mica: 1.500 u 1 f ceramic: $1-50 \mu \mu \mathrm{f}$ variable.

Miscellaneous: $1-2.5-\mathrm{mh}$ r.f. Choke: 1 -955 tube and socket: 1-4-prong socket (Amphenol 78-S45); 2-coil forms (Amphenol type 24): 2-4-prong plugs (Amphenol 71.45): 1 -metal box $4 \times 4 \times 2$ inches; $1-7$-prong socket.
into a 4 -prong miniature chassis plug (type $71-4 \mathrm{~S}$). The two are cemented together or they may be held together by screws. This makes a plug-in coil form with a bakelite base so there is no soldering problem. The chassis plug mates with Amphenol socket type 78S4S.

Two coils are used with this probe. One has 8 turns occupying about $1 / 2$ inch. This tunes over 10 and 15 meters. The other has 4 turns and oscillates on 6 meters. Other ranges may be determined experimentally; it is difficult to specify exactly at high frequencies.

The grid-dip instrument tunes much more sharply than an absorption meter. A circuit does not have to oscillate to have its frequency measured by the grid-dip method. This offers a decided advantage. Not only must an absorption type meter depend upon an oscillator circuit to operate, but in the process a small amount of power is taken from that circuit. In cases of low-power highQ circuits, noticeable impedance may be reflected.

"What's the number of that tube? If the set acts that way again, I won't have to call you!"

exceptionally fin prices, plus quality construction and leader in UHF-VHF performance make RADELCO and
Parts Jobber.

UHF "BO-NANZA"

All metallic construction. No plastic insulators to absorb moisture and weaken signal . . . an all-weather antenna. Shipped pre-assembled.

Model US-201 List \$3.95. As shown, fots mast Model US-202 Lisp \$8.25. Double Stack with O-bars.

NEW UHF-VHF "BOW-X" ANTENNA

UHF elements are completely isolated from VHF elements by metallic insulator. Unique construcfion permits use of single line to set for both UHF and VHF signals. Pre-assembled.

Model US.761 List \$8.45 Single Stack

Model US-762 List $\$ 17.75$
Dauble Stack with Q-bars.

Model US-102 List $\$ 5.45$
Double Slack, 2 10 a carton. goin job. gain increases with inereasing fre-
quency. quency. Matches 300 -ohmline. Pre-assomble

Madel US-104 Litt $\$ 11$ Madol US-102 Lisi $\$ 0.25$ O-bars-

ABOUT UHF

CONVERTERS

Many converters on the market today are unsatisfactory in fringe and shadow areas where signal strength is low. Before you install a UHF converter in these areas you should know these facts:
Signal power loss in the preselector seriously affects picture quality. Most UHF converters use sliding. contact shorted line tuners in the preselector with a fixed power loss of 6 db . The Turner converter uses High Q coaxial cavity tuners with no sliding contacts. Signal power loss is cut to 3 db . The resulting low noise figure keeps picture quality high.
Oscillator radiation often causes disturbing interference with neighboring sets. In the Turner converter the oscillator tube socket and all associated circuits are inside the coaxial cavity, self-shielded. Removable covers provide a second shield against radiation.
High amplifier noise figure can further damage picture quality. The Turner converter uses a special broadband amplifier with Cascode circuit. It retains the preselector signal savings without appreciably increasing the noise figure. The Turner amplifier noise figure is only 4 db .

Whether you're selling converters for installations in shadow or fringe areas or putting one in your own home, remember . . . the Turner converter often means the difference between good reception and bad.

EXCLUSIVE TURNER FEATURES

- Higher sensitivity
- Extremely low noise figure
- Exceptional frequency stability
- Double shielding
- Hi-Q silver plated coaxial cavities
- No sliding contacts

OTHER MAJOR TURNER FEATURES Continuous single-knob tuning. lliumi$8^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime}$-rule dial. 5 m aller size: " $\times 6$. Use with UHF or combination antennas. Self powered, uses channels 5 or 6. Complete installation instructions for $110-120$ volts $50-60$ cycles $A C$. Schematic included.

List price $\$ 49.50$

In VHE fringe and shadow areas, the Turner Booster is a superior performer, too.

CHARACTRON TUBE HAS MANY

COMMERCLIL APPLICATIONS

By S. M. MILANOWSKI

DESPITE the "human inertia" that often delays the development and use of new inventions for periods of many years, Joseph T. McNaney's Charactron tube has found a variety of commercial applications since its development was first announced by Consolidated Vultee Aircraft Corporation at San Diego, Calif., back in 1949. (See Radio-Electronics, December, 1949.)
The Charactron is a special cathoderay tube which is distinguished from its predecessors to the extent that it has a beam-forming matrix situated between its electron gun and fluorescent screen. The matrix has a sequence of stencil-like openings with different configurations (for letters, numerals, or other characters), through which the electron beam must pass before it reaches the screen. These apertures alter the cross-sectional shape of the beam so that it forms images of a predetermined character. After leaving the matrix, the beam passes through a second set of deflecting plates which position the image at any desired point on the screen.
Because it can produce as many as 10,000 separate characters in a period of only one second, and these can be positioned on the screen in any arrangement desired, the Charactron is a tube of particular importance in the development of equipment for the transmission, storage, reproduction, and interpretation of data requiring the visual use of words, symbols, and statistics. For example:

One version of the Charactron is currently being used with electronic computers to convert electronic answerimpulses into visual figures which can be easily read and recorded by engineering personnel.
Charactrons with standard alphabetical and numerical matrices are being used in Xerographic high-speed printing machines. Here their purpose is to reproduce visual images on lightsensitive surfaces, so that words and figures can be permanently developed and transferred to paper. Messages and data thus printed may come directly from a remote transmitter or from an automatic filing system wherein various types of information have been recorded on magnetic tape.
As shown in Fig. 1, the Charactron starts with a more or less conventional electron gun and a set of electrostatic deflecting plates called selectors. These are followed by the beam-forming matrix and a second deflecting-plate assembly. The latter may be varied in many ways to meet special requirements. The matrix is located about three inches ahead of the guai-selector assembly.

Focusing voltage for the Charactron

Wanted
 DISTRIBUTORS
 WHO WILL HELP
 DISTRBUTORS

the electromic

service techmiciant

Advertisements like the one shown here go a long way toward giving the serviceman the community standing he so rightfully deserves.

But obviously he cannot afford to go such a campaign alone. We, you and Sprague, can help. So let's all pitch in-

Order advertising mats and reprints of this advertisement for all your
customers ... who, in vertisement for all your
customers ... who, in turn, can mail it or advertise it in newspapers to their customers.
Sprague's high volume printing makes reprints available at extremely low quantity rates. Write, wire, or phone for complete information.
Order advertising ad
promener

You'll never see your doctor advertise a special sale on appendectomies ...
You'll never see your lawyer announce cut-rates for divorce cases ...
You'll never see your dentist hold a " 2 -for-1" sale on extractions...
AND You'll never see the day when you can take your TV set in for a service "bargain" and be sure you're getting a square deal!
"Bargains" in home electronic service are as scarce as the proverbial hen's teeth! Here's why-

The expert service technician, just like other professional people, must undergo years of study and apprenticeship to learn the fundamentals of his skill. And a minimum investment of from $\$ 3000$ to $\$ 6000$ per shop technician is required for the necessary equipment to test today's highly complex sets. Finally, through manufacturer's training courses and his own technical journals, he must keep up with changes that are developing as fast as they ever did in medicine, law, or dentistry. Those best equipped to apply modern scientific methods are almost certain to be
most economical for you and definitely more satisfactory in the long run.

Unfortunately, as in any business, there will always be a few fly-by-night operators. But patients, clients, and TV set owners who recognize that you get only what you pay for, will never get gypped. "There just ARE no service bargains"...but there is GOOD SERVICE awaiting you at fair prices!

SPRAGUE PRODUCTS COMPANY
North Adams, Mass.

SHARPER PICTURE BETTER all acound
 PERFORMANCE!
 CHANNFLS 21083

 RECEPTION in

METROPOLITAN AND PRIMARY AREAS

BE "ALL SET" WHEN UHF COMES TO YOUR CITY!

One lead-in wirc for all channels.
Reception up to 50 miles, depending on terrain and power of transmitter.

- Quality construction throughout...double plate dipole holders . . . heavy cast aluminum mast clamp. . . heavy gauge aluminum cross arms . . $7 / 16^{\prime \prime}$ aluminum tubing for extra strength and long life...micarta in ${ }^{\text {. }}$ sulator . . . over-all lightweight and partial pre-assembly mean easy assembly and erection.

The "best by test". . . according to leading technicians in areas now receiving both UHF and VHF! No matching pads or isolation filters . . . no coils or condensers which tend to cut down signals and increase cost of installations. K-T engineering has eliminated the "bugs" and the possibilities of fre-

ELECTRONICS

Fig. 1-Elements of the Charactron. Selector plates next to electron gun guide beam through desired opening in matrix, which shapes beam outline to produce letters, numerals, or special symbols on screen. Deflector plates following matrix shift image to any position desired over screen area.
is adjusted so that the undeflected electron beam will produce a relatively large spot of light, since the diameter of the beam must be large enough to cover each matrix aperture. Accelerating voltage adjustments, effective beyond the matrix position in the tube, make it possible to create a screen image of exceptional sharpness with a minimum number of control elements.

Control voltages applied to the selector plates determine which opening in the matrix the beam passes through. When it has been shaped by a matrix opening, the beam may be deflected to an appropriate area of the screen by the second set of electrostatic deflecting plates or electromagnetic forces (or a combination of both), depending on the nature of the images that must
be produced or reproduced. As many as 100 di.erent letters or figures may be provided on the matrix of a single Charactron, and the position of each on the screen is determined by its sequence or the selective voltage with which it is transmitted.

Many different types of viewing screens have been used experimentally in constructing Charactron tubes, but only the phospor types are now considered satisfactory. P-4 screens are used for direct viewing just as in TV picture tubes, while short-persistence P-11 types are used principally for photographic purposes.

Virtually all types of photographic materials and equipment can be used to reproduce the images that appear on the face of a Charactron; but Xerog-

Fig. 2-The Charactron in high-speed Xerographic ("dry") printing transforms coded signals directly into light images of letters, figures, punctuation, etc. These are focused on photosensitive drum, which picks up colored printing powder in direct proportion to degree of exposure. Charged paper picks up powder pattern, which chemicals and heat make into permanent impression.

TUBES
 ε
 PA
 Write for

ALL TUBES are guaranteed for one year ... Individually boxed. Very BEST BRANDS available for immediate delivery!

RADAR TYPE TV ANTENNA

WE FINALLY DID IT
You ordered so many thousands of these ta.
dar type TV Antennas, that the cost has
come down through the sayings of mass
\square
WE ARE PASSING THESE SAVINGS
ON TO YOU!
The only TV antenns whthe mancurach
\square Ruaranlée
Separators.
Dx at
TYPE TV
ANTENNA

REGENCY UHF CONVERTER

$\$ 31.24$

TELEVISION PICTURE TUBES semo us roun onoth Ano we

TV CONVERSION KITS

 Eesily Installedconsisting of rectanguior tube, 70 tegroe yoke. beanilul
17. Conversion Kif, as above, complase
0° Conversion Kit, ss above. complate.
21° Conversion Kit, as above. complete.
2° Conversion Kit, as above, complete.
2° Conversion Kit, ss above, completo. Eloctrostalic Tume $\$ 8.50$ extra per tube

FILTER
CONDENSERS

R. M. SPEAKERS

MISCELLANEOUS BUYS	Y-PASS CONDENSERS	Selentum heellifers
		\%
	- 4 W	
,		cois
		200

3237 West North Avenue, Caicago 47, Illimois

Completely Self-Contained, with Push-Pull Supersonic Bias-Erase Oscillator, Audio with Push-Pull Supersonic Bias-Erase Oscillator, Audio Amplifier, Speaker and Microphone in Carrying Case.

TAPE RECORDER

Here in the new Dual Speed Model PT-150 you have today's handiest, quality-built tape recorder at low cost-for home, studio, school or commercial use. New design completely eliminates slippage under all operating conditions. Vibration is reduced to absolute minimum. Gives you the many fine features of the famous PT-125-plus built-in audio amplifier and speaker, ready to plug in and use anywhere, anytime. Can also be used with separate external audio system. Recording and playback are remarkably clean, natural and full-toned. Size $121 / 2^{\prime \prime} \mathrm{x}$ $12^{\prime \prime} \times 91 / 2^{\prime \prime}$ high.

Model PT-150 Nef $\$ \mathbf{\$ 4} \mathbf{\$ 0}$
(Slightly Higher West and South)

PORTABLE PROFESSIONAL QUALITY DUAL SPEED TAPE RECORDER
Push-pull supersonic bias-erase, less audio amplifier and microphone. Designed for use with your own audio amplifier, radio or radio-phono combination, or with separate external audio system. In attractive sturdy waterproof leatherette carrying case. Size $121 / 2^{\prime \prime} \times 12^{\prime \prime} \times 91 / 2^{\prime \prime}$ high. Transport mechanism and preamplifier available without case for custom installation.

Write for
Bulletin 112

Export: Scheel International, Inc. 4237 N. Lincoln Ave., Chicago 18, U.S.A. Cable: Harscheel
raphy appears to have the greatest advantages in this connection. As it has been devel sped by the Haloid Company of Cochester, N. Y., Xerography involves:

1. Exposing a photosensitive surface such as selenium to a high-voltage electric field, which builds up a light-sensitive electrostatic charge on it.
2. Exposure of the electrostatically charged photosensitive surface to light, much the same as conventional photographic films are exposed. The light changes the charge at any point on the surface in proportion to its intensity at that point.
3. Development of the exposed surface with multicolored powders, which are attracted to the surface in accordance with the respective intensities of the remaining electrostatic charges.
4. The use of heat, pressure, and adhesives for transferring the powder images to paper and other surfaces.
This is an inexpensive and rapid method of reproducing high-contrast images because the photosensitive printing plates can be recharged and re-used indefinitely.

Fig. 2 shows how a Charactron tube has been used in conjunction with Xerographic equipment for high-speed reproduction of printed matter on paper. Operated at top speed, this setup is capable of decoding numerous types of input signals and translating them directly into words and figures that can be printed continuously in small type at a rate of 20 square inches of paper per second.

In this setup images on the face of the Charactron are focused by the lens on the surface of a selenium-coated cylinder. The section of the cylinder to be exposed is charged with high voltage immediately before exposure to light coming through the lens. The cylinder is rotated by a small motor synchronized with the Charactron control circuits, and exposed surfaces are developed immediately after they pass beyond the range of the lens by means of mechanically agitated powders in a trough beneath the cylinder.

The developed surfaces next come in contact with the chemically treated surfaces of a continuous roll of paper, which is electrically charged to facilitate the final transfer of powder images. A heater unit "fixes" the powder-printed copy, and makes the image permanent. Research is daily opening new fields for use of the Charactron. A field in which it should prove virtually indispensable is that of guided missiles. Data could be telemetered from a guided missile in high-speed flight and photographically recorded by means of the Charaction tube. Needless to say, such flight instrument data would be very difficult to obtain by other means. Fundamentally, the system would operate with the guided missiles signaling to special radio receiving equipment. This signal could then be passed through a commutating system to a Charactron commutator, then to an analog-to-digital converter. From there to a Charactron commutator, then to Charactron control circuits, and finally to the tube. END

NEW JFD "3-in-one" LIGHTNING ARRESTER

No. ATIl0 with hardware for wall or window sill mounting, \$1.50, list.
No. ATlIOS with stainless steel strap for pipe mounting, $\$ 1.75$ list.
Both feature the patented JFD strain-relief lips which prevent contact washers from ripping the lead-in wires apart!

one for all... all for one

1. for CHF or VHF tubular twin lead
2. for VHF flat twin lead
3. for VHF or UHF open wire

NO GUESSWORK

with JFD LIGHTNING ARRESTERS!
With ${ }^{\text {SrD }}$, you don't just HOPE contact is made, you KNOW it is . .
you can SEE it! LiDe Lightning Arresters have the patented, strain-relief lips!
解 accessories!

understanding MECHANICAL FILTERS

Superior filtering and se-
lectivity is obtainable by

use of mechanical filters

By LESLIE L. BURNS, JR.

Fig. 1-Conventional i.f. transformer.

Fig. 2-Typical responsecurve.For Fig.1.

Fig. 3-Coupling with third tuned circuit.

Fig. 4-Typical response curve for Fig. 3.

OBTAINING adequate selectivity is an always-present problem in radio receiver design. Most receivers get the necessary selectivity by cascading a number of i.f. stages. This method does not result in ideal selectivity; it gives us a rounded selectivity curve with broad skirts. The ideal curve would have a flat top and steep sides.

Special commercial receivers for point-to-point communication sometimes use crystal filters of the type used to a great extent in telephone work. These are expensive and not suitable for use in communications receivers for ordinary use. A new answer to this problem is provided by mechanical filters which are becoming increasingly important in radio communications. Several radio sets manufactured for the Armed Forces have mechanical filters. One company markets such a filter for amateur or experimental use and also sells a communications receiver with this filter installed.

By a mechanical filter we mean a filter that employs mechanically coupled mechanical resonators as distinguished from one that employs mechanical resonators coupled electrically (as in the case in crystal filters). This definition becomes clearer as a mechanical filter is better understood.

These filters make it possible to obtain a lot of filtering in a small space and to maintain the flat top and steep sides so desirable in selectivity considerations. These filters are stable with respect to temperature and humidity. Field maintenance is eliminated, since-once a filter is manufacturedno adjustment is either necessary or possible.

Principles of Operation

The basic idea behind mechanical filters is very simple and can be easily understood. Consider Fig. 1 which shows a conventional i.f. transformer coupling the plate of one i.f. amplifier to the grid of the next i.f. amplifier. The two tuned circuits are coupled by a mutual inductance. The amount of this mutual coupling determines the bandwidth of this particular transformer. Fig. 2 is a typical response curve for this type of circuit. To obtain more selectivity with this arrangement we might put a third tuned circuit between the two already shown, as illustrated by Fig. 3. Fig. 4 illustrates the response from this arrangement. Now we might continue this procedure until we get a response approaching the ideal, which would be a flat-topped curve with steep sides.

These additional electrical circuits would have losses due to the resistance of the coils, and these losses would prevent the selectivity curve from being as steep as might be desired. Also the problem of aligning additional circuits during maintenance operations in the field would be acute. However, these interior electrical circuits can be replaced by permanently tuned mechanical circuits. Fig. 5 shows an arrangement similar to Fig. 3 wherein the middle electrical circuit has been replaced by a single mechanical resonater. This mechanical resonator is exactly equivalent to the middle electrical circuit of Fig. 3, with the additional feature of being of very low loss.

Magnetostrictive conversion

The radio-frequency signals must be converted to mechanical vibrations in

Fig. 5-Mechanical resonator circuit.

Fig. 6-Multisection magnetostrictive rod filter.

Fig. 7-8-circuit mechanical filter designed for 455 kc with bandwidth of 6 ke. Small necks couple circuits together.

Fig. 8-End circuit has narrow diameter.
an intermediate amplifier so that they may be filtered by a mechanical filter. This is done with the help of a phenomenom known as magnetostriction. When certain materials are placed in a magnetic field they expand or contract, depending on the nature of the particular material. Nickel contracts when placed in a magnetic field. Thus a small rod of nickel becomes slightly shorter when magnetized. Now if the magnetic field is made to alternately increase and decrease, the nickel rod will alternately become shorter and longer. If the frequency of the alternating magnetic field coincides with the resonant frequency of the rod, the motion will be relatively large. Efficient elec-trical-to-mechanical conversion of energy is thus obtained.

Conversely, a rod of nickel that is alternately expanding and contracting generates a magnetic field that can produce a voltage in a coil surrounding the rod. In both cases a permanent magnetic field is supplied to prevent double frequency operation.

With these two effects in mind it is easy to see that the electrical energy is converted to mechanical energy at the filter input coil by magnetostriction; at the output the reverse phenomenon converts the mechanical energy back into electrical energy.

Instead of nickel, most mechanical filters are made of an iron-and-nickel alloy called Ni -span C , which is very stable with respect to temperature.
 hundreds in use by TV manufacturers' and dealers ${ }^{*}$ technicians

Judging by ratio of sales to market potential, this laboratory grade $5^{\prime \prime}$ oscilloscope is preferred by the great majority of television and electronic technicians. The specifications explain why such is the case.

Specifications

Vertical Amplifier - Push-pull amplifiers provide flat response within 1.5 db from 20 cycles thru 4.5 Mc .
Sensitivity Ranges-The sensitivity ranges are $018, .18,1.8, .25,2.5,25$ RMS volts-per-inch
Horizontal Amplifier - Push-pull with sensitivity of . 55 RMS volts-per-inch. Input Impedances-Vertical 1.5 megohms shunted by 20 mmid . Direct to plates, balanced 6 megohms shunted by 11 mmld . Horizontal: 11 megohms. Linear Sweep Oscillator-Saw tooth wave 20 cycles to 50 Kc in 5 steps. 60 cycle sine wave also available as well as provision for using external sweep. Input Voltage Calibration-Provides a standard voltage against which to measure voltages of signal applied to vertical input.

Vertical Polarity Reversal-For reversing polarity of voltage being checked or for choosing either positive or negative sync. voltages
Return Trace Blanking-Electronic blanking provides clear, sharp trace to prevent confusion in waveform analysis
Synchronizing Input Control-to choose among INTERNAL, EXTERNAL, 60 CYCLE, or 120 CYCLE posttions.
Intensity Modulation-60 cycle internal or external thru front panel binding posts.
Accessory-Model CR-P Probe for demodulating RF and IF voltages.

Prices: Model CRO-2, Users' Net $\$ 197.50$ Model CR-P Probe, Users' Net $\$ 9.95$

See your electronics distributor for more information, or write

> MACHSON EIECTRICAL INSTRUWENT CO. - DAYTON 2, OHIO
> "Service Engineered" Test Equipment IN CANADA: THE CANADIAN MARCONI CO.

Fig. 9-Heavy slugs couple resonators.
By continuing the process of adding more mechanical circuits we have the arrangement shown in Fig. 6. Here we have six mechanical circuits and two electrical circuits for a total of eight circuits. This arrangement will provide a selectivity curve with a Hat top and steep sides suitable for most communications receivers designed for general use.

The bandwidth of this type of arrangement is determined by the relative size of the mechanical resonators to the small coupling necks. The small neck corresponds to weak coupling and produces a narrow band, whereas a largerdiameter neck produces a wider band. To keep the functions of a mechanical filter clearly in mind, imagine each resonator-that is, each large portion of the rod-to be a tuned circuit, and imagine each small neck portion to be like a small amount of mutual coupling Fig. 7 is an enlarged photograph of an 8-circuit mechanical filter designed for 455 kc with a bandwidth of 6 kc . The small necks coupling the mechanical

RCP xum mawin

ACCURATE MEASUREMENT OF COMPLEX WAVESHAPES

SINE WAVE

RMS or Peak-To-Peak. Useful and Necessary-Read Directly With Model 655

PEAKED SAWTOOTH WAVE

TV Horizontal Signal.. Peak-To-Peak Reading Re-quired-Easily Done Direclly with the Model 655.

PULSE WAVE

TV Horizontal Deflection... Peak-To-Peak Measurements Needed-Read It Directly on the Scale-Model 655.

COMPOSITE VIDEO WAVE
Video Amplifier ... Peak-ToPeak Measurements A Must -Do It Directly With The Model 655.

...gives a true reading measurement of complex and sinusoidal voltages with necessary peak-topeak or RMS value read directly, for the analysis of waveforms in video, sync and deflection circuits.
Now TV efficiency is given greater effectiveness because sets can be serviced as the manufacturers say-the peak-to-peak way. The combination of this \mathbf{P}. to \mathbf{P}. meter and service notes to match, take the guesswork out of service and speed up your service operation.
Versatility of measurement, built into each Model 655, serves a variety of industrial applications in the service of vibrator power supplies, $A C$ generators and all equipment utilizing any type of waveform or DC.
Match the Model 655 with any peak-topeak VTVM-You will find that comparable performance can only be found
in much higher priced instruments. Of high impedance design, the Model 655 makes use of an electronic balanced push-pull circuit and peak-to-peak rectification. The result is an absence of circuit loading, waveform error or frequency distortion.

This handsome looking unit has a brushed aluminum panel, etched for durability and uses an attractive clear plastic meter. Comes complete with our new "RCP SOLDERLESS TEST LEADS" for operation on 105 to 125 V AC .

FOR TELEVISION SERVICE AND INDUSTRIAL MAINTENANCE -
 - PEAK-TO-PEAK AC measurements of from 2 V to 4200 V on 7 ranges.
 - AC RMS measurements of 1 V to 1500 V on 7 ranges.
 - DC measurements of from . 02 V to 1500 V on 7 ranges.
 - RESISTANCE measurements of from $\mathbf{2}$ ohms to 1000 Megohms on 7 ranges.

Remember You can do more with a "DO-ALL".
See It at Your Parts Distributor. Write Dept. RE-10 for RCP '53 Catalogue.
RADIO CITY PRODUCTS CO., IIC.
152 WEST 25th STREET - NEW YORK 1, N. Y.

YOUR HIGH-PAYING interesting career in TEEVISION sfarts here!

Complete, Easy-fo-Learn HOME STUDY COURSE

with one of Arrerica's LARGEST schools
There's a place for YOU in the tremendous, billiondollar Television, Radio \& Electronics industry! It's so easy to get started with the famous CRESCENT SCHOOL course. Learn at home, in your spare time. Illustrated, simplified lessons and kits to practice on. No previous training needed. Send for FREE sample lesson . . . make this day the day you started on your way to a brilliant profitable career!
approved for kobean yets
Also Day \& Eve. Classes Troined of Our School

CRESCENT SCHOOL

"One of the Largest of its kind'

CRESCENT SCHOOL

ToDAY: 500 Pacific Street, Bklyn. 17, N.Y.
Sirs: Rush your FREE sample lesson arid full details about the CRESCENT SCHOOL Courseat no obligation to me!

- Home Study Course \square Residential Course

NAME 1 ADDRESS CITY ___ ZONE STATE

 wechancal flter
Fig. 10 -Selectivity of various filters.
circuits together can be easily seen. The interior resonators of this filter are actually 0.4 inch long.

Further design considerations

The resonant frequency of a mag. netostrictive rod is determined by its length. A rod of nickel about 1 inch
long will be resonant at 100 kc . The relation is:

$$
\text { Length }=\frac{\text { velocity of sound }}{\text { frequency } \times 2}
$$

The velocity of sound is different in different materials. In nickel it is 1.95×105 inches per second, while in Ni-span C the velocity is 1.89×105 inches per second. Each of the resonators in a mechanical filter is made exactly this length or some multiple of this length so that they all will be resonant at the center frequency of the pass-band. In some designs the interior resonators are made just twice as long as the end resonators, but they are still resonant at the center of the pass-band.

Also, other forms than the rod-shaped resonator can be used in mechanical filters. Disc or spherical resonators can be used. Each of these different shapes has advantages that make it suitable for certain frequencies and bandwidths.

The bandwidth of the simple rod-type filter that has been illustrated is determined by the relative size of the coupling neck to the resonator. The relation is:

$$
\frac{\text { bandwidth }}{\text { center freq. }}=\frac{\text { area of neck }}{\text { area of resonator }}
$$

where the area is the cross-sectional area of the neck or resonator.

Fig. 11-A top-side view of a typical mounting for a mechanical filter.

Fig. 12-The drive coil and permanent magnet can be seen in this bottom view.

BLAK-RAY SELF-FILTERING ULTRA-VIOLET LAMP

BLAK-RAY 4-watt lamp, model X-4, complete with U.V tube. This lomp gives long-wave ultraviolet radiation having a wave-length of 3654 to 4000 angstrom units. Some of the substances made to fluoresce visibly when illuminated by U.V light are certain woods, oils, minerals, milkstone, cloth, paints, plasties, yorn, drugs, crayons, etc. This lamp is self-filtering and the invisible U.V rays are harmless to the eyes and skin. Equipped with spectral-finish aluminum reflector. Consumes only 4 watts and can be plugged into any 110 volt 50.60 cycle A.C. outlet. Will give 2000 to 3000 hours of service. If weighs but $13 / 4$ lbs. Approved by the Underwriters Laboratories and has a builtin transformer so that it may be safely used for long periods when necessary. Extra U.V tubes are available.
Ship wt. ${ }^{4} 168_{0}$.
ITEM NO. 125
UNUSUAL GUY
$\$ 14.75$
POWERFUL ALL PURPOSE MOTOR
Sturdy shaded pole A.C. induction motor. 15 watts, 3000 rpm
 $1 / \mathrm{m}^{\prime \prime}$ shaft $3 / 10^{\prime \prime}$ diounting studs: 120 volts 50 diameter: 110 oniv. When geared down, thit anit can operate an $18^{\prime \prime}$ turn veight a 200 lb. dead weight. Uso it for fans, dis plays, fimers and other pur Poses. Ship wt. 2 lbs. UTEM NO. 147 $\quad \$ 2.45$

WATTHOUR METER

Leading makes-reconditioned. Ideal for tralts 60 eycles 2 -wire A.C.s amp. Heayy mire A.C. Samp. Heavy met. Easy to install. Ship ITE NO

WESTERN ELECTRIC BREAST MIKE Lightweight I lb. carbon micro phone. Aircraft type. Breastplate mounting, adiustable 2-way swivel. Easily fastened straps. For home broadcasts, communica. tions etc. Complete with 6 foot cord, hard rubber plug. Sheradized plate, non-rusting finish ITEM NO 2 Ibs.
ITEM NO IS2
\$2.25
AMAZING BLACK LIGHT

250-watt ultra-violet light source. Makes fluorescen Fits any lame socket For experimenting entertaining experimenting, entertaining unusual lighting
Ship. wt. 2 lbs. ITEA NO.
AT SAVING AT A SAVING AT $\mathbf{\$ 2 . 4 5}$
250 POWER TELESCOPE LENS KIT Make your own high powtred 6 ft . telescope Kit contains 2" diam.. 75" focal length, ground lens polished objective
 lens and necessary eye piecer. Mognifies 50 x to
250 x . Full instructions
Ship. wt. I tb.
TTEM NO, ${ }^{123}$ YOU SAVE AT $\$ 2.95$
HUDSON SPECIALTIES CO.
25 West Broadway, Dept. RE-10-53
New York 7. N. Y.
(Be sure to tnelude shippince for items eircled below. Ohfiny deposit of ? ${ }^{\text {M }}$. C.O.D. OROERS ACCEPTED ONLY WITH $\mathbf{2 0} \%$ DEPOSIT
INCLUDE SHIPPING CHARGES. $\begin{array}{rllll}\text { Circle }_{87}{ }^{\text {Itemg }}{ }_{147}^{\text {Wanted }} & 33 & 152 & 123 & 123\end{array}$ Name \qquad Pleaso print Coileariy
\qquad
clity
cityzone. . . . State

LOOKING for the RIGHT TV REPLACEMENT TRANSFORMER?

 you'll find it in STANCOR'S NEW TV REPLACEMENT GUIDEEasier to use . . . lists replace-
ments by manufacturer's model and chassis number and also by original part number.
Up-to-date . . . over 5600 models and chassis are covered, including virtually all sets built prior to 1953 as well as most 1953 models.

You'll save time and trouble when you use this valuable Stancor reference.
Get it now from your Stancor distributor, or write us directly for your free copy
FIVE NEW STANCOR EXACT REPLACEMENT FLYBACKS
Many of these units are the result of recommendations of the Stancor Servicemen Advis ory board, composed of the top TV servicemen throughous the country.

PLUS A-8:26, Universal verfical blocking-oscillator transformer for all Philco sels, including 1953 models.

Stancer Pari No.	Exact Replocement For	No. of Models Using Flyback
A-8137	Hoffman $\# 5035$	29
A-8220	Philco \#32-8555	24
A-8221	Philco $/ 32-8565$	18
A-8222	Philco \#32-8533 \& $\# 37-8534$	38
A-8223	Philco \#32-8572	15

CHICAGO STANDARD TRANSFORMER CORPORATION

3592 ELSTON AVENUE • CHICAGO 18, ILLINOIS EXPORT SALES—Roburn Agencies, Inc., 39 Warren St., New York 7, N. Y.

FACTORY ASSEMBLED AND CALIBRATED
NEW MODEL 940
VACUUM TUBE VOLTMETER

SPECIFICATIONS:

- 6-AC VOLT RANGES 0-3, 15, 30, 150, 300, 1500 . (Frequency response from 25 to
- 6-DC VOLT RANGES 0-3 15 in 150300 1500. (Up to 30,000 volts with accessory
- 5-RESISTANCE RAWGES: $1000-10000$ ohms, l-Meg, 10 Megohm, 1,000 megohms (10 megohms center on 1,000 megohm
- DECIBEL RANGES - 24 to $-1.5-8$ to $-15+12$ to $+35,+21.5$ to $+44.5,+32$ The Model 940 and operating comes complete with test leads bakelite case. Factory asisembled round cornered 10 DAY MONEY BACK GUARANTEE

Write for FREE CATALOGUE
ALL-MAIL SALES CO., Dept. RE-10
LL-MAR SALES CO., DeP'. RE-10
100 PARK PLACE, NEW YORK 7, N. Y.

Mechanical filters, like electrical filters, must be terminated for minimum ripple in the pass-band. Termination of a filter for minimum ripple is analogous to terminating a television transmission line for minimum reflections in the picture. Mechanical resistance in the form of mechanical lossy material is attached to the end resonators. (A mechanical lossy material might for example be a small piece of rubber glued to the end resonator.) Another method of producing the required mechanical resistance is to attach a long piece of wire coated with some lossy material to absorb the vibrations. With this method it is easy to get exactly the proper amount of mechanical resistance since the diameter of the wire determines the amount of the losses. Fig. 8 shows the end portion of a mechanical filter with a coiled lossy line attached.

Sometimes, when the bandwidth of the filter is not too great, no mechanical resistance in the form of lossy material is necessary, since all the resistance needed to properly terminate the filter is provided by the electrical circuit coupled to the end resonator.

Another consideration in mechanical filter design is that, to obtain the flattest pass-band response, the end resonators must contain half the energy of the interior resonators. This is evident in Fig. 7 where it can be seen that the end resonators are half as long as the others and in Fig. 8 where the end resonator has a smaller diameter than the interior resonators.
The circuits of an electrical filter can be coupled by either a mutual capacitance or a mutual inductance. This is true also of the mecharical case. One form of mechanical filter uses heavy slugs to couple the resonators instead of the small necks as has been previously shown. Fig. 9 illustrates this type of filter. Here the small tubes are the resonators, while the slugs form the couplers. The slugs are about 0.2 inch long, while the interior resonators are about 0.6 inch long. Again on this filter the half-energy end resonators can be seen clearly. A filter of this type is fully equivalent to the
other form shown, and the choice between the two is purely a matter of the ease of fabrication for the frequency desired.

Applications

A typical selectivity curve is illustrated in Fig. 10, which also shows for comparison the curves obtained in a high-qualitv communications receiver with and without the crystal filter. The crystal filter here referred to is the type usually found in communications receivers and is designed to provide a single sharply peaked response and not a flat-topped response such as is provided by a mechanical filter or a band-pass crystal filter employing several crystals.
The electrical circuit diagram for a mechanical filter is given by Fig. 6. A typical mounting for a mechanical filter is illustrated by Figs. 11 and 12 for a 100 -ke filter with a 6 -ke bandpass. The drive coil and permanent magnet are evident in the underchassis view. Filters for higher frequencies will have much smaller housings.
The application of mechanical filters to high-quality receivers will increase as improved designs and better fabrication techniques are developed. It seems unlikely that they will ever be used in the cheap table-model broadcast receivers because the selectivity of these receivers is now satisfactory. However, the better-quality broadcast receivers will use mechanical filters. The big field for the application of mechanical filters is in communications receivers and in military equipment where the stringent selectivity requirements cannot be met by any other type of filter.

References

"Compact Electromechanical Filter," R. Adler. Electronics, April, 1947, page 100.
"Mechanical Filters for Radio Frequencies," W. van B. Roberts and L. L. Burns, Jr. RCA Review, September, 1949, page 348.
"A Bandpass Mechanical Filter for 100 Kc ," Leslie L. Rurns, Jr. RCA Review, March, 1952, page 34 , "Mechanical Bandpass Filters for I.F. Ranges," Hen Roberts, QST, February, 1953.
"How to Use Mechanical I.F. Filters." M. L. Doelz and J. C. Hathaway, Electronies. March, 1953, page 138.

END

CIRCUIT-SYMBOL STAMPS

Here's an unusually handy gadget for the technician, engineer, or hobbyist who isn't an expert draftsman but who wants to draw neat schematics. It's a set of $1211 / 4 \times 11 / 4$-inch clear-plastic blocks engraved with the basic component symbols that make up practically all electronic circuit diagrams. All you have to do is ink them lightly on an ordinary stamp pad and press them on the paper to produce perfect tube diagrams, resistors, or other common circuit elements.

The set has five tube stamps, covering standard types from diode to pentagrid converter; a fixed resistor and a potentiometer; fixed and variable capacitors; a basic inductor stamp which can be repeated and inverted as required for transformers or coupled circuits; a contact-rectifier symbol; and a stamp for headphones. [This latter

one will probably get relatively little use, and possibly the manufacturer (Frecise Measurements Co.) should substitute a more common symbol such as a speaker, line plug, or a transistor.]

END

(and Transistors)

THE transistor continues to make news. As mentioned last month, Sylvania Electric Products has developed two new types of point-contact transistors.
One is a tetrode transistor 3 N 21 that was scheduled to be commercially available about August 15, and the other is a pentode transistor that is expected to become commercially available later this year. Sylvania is the first company to announce that its development work

Photo shows compactness of transistors. in tetrodes and pentodes has progressed to the point of commercial production. Where the triode transistor has two catwhiskers in contact with the germanium crystal, the tetrode has three wires making contact, and will do the work of two triode transistors in all applications where the two outputs could be paralleled.
The type 3 N 21 tetrode is designed primarily for use in switching and small signal applications. Recommended small-signal applications include modulation, signal translation apparatus, and audio or low r.f. mixer. The maximum ratings of the 3 N 21 are: collector voltage d.c. -60 ; collector dissipation 100 mw; emitter voltage d.c. -50 volts; emitter output (either emitter) 30 mw ; ambient temperature $50^{\circ} \mathrm{C}$. Voltages are with respect to base.

New Tubes

With virtually simultaneous announcements, General Electric and the Rauland Corp., have heralded

For Inverting D.C. to A.C. . . . Specially Designed for operating A.C. Radios, Tape Recorders, Wire Recorders, Record Changers, Television Sets, Amplifiers, Address Systems, Radio Test Equipment and most small electrical and electronic devices from D. C. Voltages in Vehicles, Ships, Trains, Planes and in D. C. Districts.

| | Type
 Input
 DC Volts | A.C. Output
 60 Cycles | Output
 Int. | Wattage
 Cont. | Consumer
 Net Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |

KIT \$79.95 Factory Wired \$129.50

- VERTICAL FRER, RESPONSE; flat ± 2 db 10

CPS-1 mC.

- HOR. FREQ. RESP.: flat $\pm 0 \mathrm{db} 10 \mathrm{cps}-200$
$\mathrm{kc},-4 \mathrm{db}$ at 500 kc .
- HOR. SERS.: 3 volts rms/inch.
- SWEEP RANGE: $15 \mathrm{cps}-100 \mathrm{kc}$
- 3.STEP FREQ.-COMPENSATED ATTENUATOR
eliminates freq. distortion, overloading.
- CATHODE FOLLOWER inputs to both amplifiers.
- PUSH-PULL outputs in both amplifiers.
- REYURN TRACE BLANKING
- V a H TRACE EXPANSION a CENTERING:
$1.5 X$ full screen without distortion.
DIRECT CONNECTION to vert. CRT plates
PHASING CONTROL of internal 60 cps sine wave sweed.
AT FRONT PANEL: intensity mod. input; 60 CDS, sawtooth outputs.

Famous EICO amazing value-packed economy-priced 425 K 5" Push-Pull Scope KII \$44.95. Wired \$79.95.

NEW EICO
OV \& 12 V BATTERY ELIMINATOR. \& CHARGER

1050K KIT \$29.95. Factory Wired \$38.95. - DC OUTPUT: 0.8 y or 0.16

- continuous cuarent rating: 10 a at 6
$V_{1}{ }^{6} A$ at 12 V .
- intermittent curaent rating: 20 a at

6 V , 12 A at 12 V .

- SEPARATE VOLTME
-

Send for our new 1954 CONCORD CATALOG!

54 Vesey Street
New York $7, N$.
\square Send me at once your new 1954 catalog ${ }^{\text {Sen }}$
\square Send complete information and tech. nical data on NEW EICO Model 470
\square Please send EICO Model 20\% deEnclosed find
posit with $\mathrm{C} .0 . \mathrm{d}$ required. Pre-paid if premittance in full
Name.
Stree
Street
City

oncord Radio

Phone
New York 7. N. Y.
Disby $9-1132$
two new 24 -inch rectangular glass cathode-ray tubes for television application, the 24 CP 4 and its aluminized counterpart, the 24 CP 4 A .
The new tubes have a deflection angle of 90 degrees, a major factor in making them shorter than 21 -inch glass rectangular tubes. They measure only $211 / 8$ inches in over-all length.
The new types are glass, magneticfocus and magnetic-deflection, directview picture tubes. They boast an electron gun which is used with an external single-field ion trap magnet and an external conductive coating that acts as a filter capacitor when grounded. Another feature of the two new types is a gray, filter-glass face-plate to improve contrast in the presence of ambient light.

The aluminized version, the 24 CP 4 A , gives additional light output because of its metal-backed screen.

24 CP 4 has deflection angle of 90 degrees.
Recommended operating conditions for the 24 CP 4 and 24 CP 4 A :
Anode voltage, 16,000 ; grid 2 voltage, 300 ; grid 1 voltage, -33 to -77 ; focusing coil current, 119 ma ; ion trap intensity, 40 gausses. Base-pin connections are for a standard small-shell, 5-pin duodecal socket.
A new RCA electron tube specially engineered to shake off the "shakes" of airborne and mobile electronic communications equipment has been made available. The new type tube, RCA-

VC- 1258 thyratron; 6336 twin power triode.
6101, is designed specifically for use as a class-A amplifier and control tube in applications where dependable equipment performance hinges on the ability of electron tubes to take abnormal shock and vibration.
The 6101 is a medium-mu twin triode which couples the characteristics of the 6 J 6 with the ability to withstand punishing physical operating conditions.
to the
E.E. or

PHYSICS GRADUATE

with an interest
or experience in

RADAR or
 ELECTRONICS

Hughes Research and

Development Laboratories, one of the nation's large electronic organizations, are now creating a number of new openings in an important phase of operations.

Here is
what one of
these
positions offers
you

our company

located in Southern California, is presently engaged in the development of advanced radar devices, electronic computers and guided missiles.

these new positions

are for men who will serve as technical advisors to the companies and government agencies purchasing Hughes equipment.

you will be trained

(at full pay) in our Laboratories for several months until you are thoroughly familiar with the equipment that you will later help the Services to understand and properly employ.
after training
you may (1) remain with the Laboratories in Southern California in an instruction or administrative capacity, (2) become the Hughes representative at a company where our equipment is being installed, or (3) be the Hughes representative at a military base in this country-or overseas (single men only). Adequate traveling allowances are given, and married men keep their families with them at all times.

> Your future
in the expanding electronics field will be enhanced by the all-around experience gained. As the employment of commercial electronic systems increases, you will find this training in the most advanced techniques extremely valuable.

How
 to
 apply

If you are under 35 years of age and have an E.E. or Physics degree and an interest or
experience in radar or electronics,
write

to H UGHES

research and development laboratories
Scientific and Engineering Staff Culver City,
Los Angeles County, California

```
Assurance is required that the relocation of the
applicant will not cause the disruption of an
urgent military project.
```

The new tube has a pure tungsten heater to provide long life under frequent on-off switching operations. Additional insulating material has been applied to the heater to give protection against short-circuits between the heater and cathode under conditions of extreme vibration. Base connections are the same as the 6J6.
Chatham Electronics Corp. has announced the production of two new tubes. The first, type 6336, is a highperveance, high-plate-dissipation twinpower triode for voltage regulation. Used as a series tube, it will pass 150 ma per section at 40 volts d.c. with minimum bias, and the same current at 200 volts d.c. with a grid bias of -60 volts. The tube features a hard glass envelope and an 8 -pin butt stem. Pin connections are the same as those of the 6AS7-G. The filament voltage is 6.3 , and it draws 5 amp . Forced ventilation is not necessary at ambient room temperature. Mu is $2.7, \mathrm{gm}$ is 11,000 micromhos, Rp is 250 olims. Its life expectancy is 1,000 hours minimum. The second tube, type VC-1258, is a miniature hydrogen thyratron for pulse generating applications. It is capable of handling peak power up to 10 kw . This tube will fit a standard miniature socket. (See base diagram below.) It is rated at 1,000 peak anode volts, 20 amperes peak anode current, and 40 ma average anode current. Repetition rates in excess of 10,000 pulses per second are possible at reduced ratings.

IC- $\operatorname{CNTERML}$
CONECTION
VC-1258
Tube fits standard miniature socket.

The VC-1258 will withstand all shock and vibration tests required of a ruggedized electronic tube.

RCA has announced the production of a tube type 6 CF 6 . The 6 CF 6 is a sharp-cutoff pentode of the miniature type especially designed for use in gain-controlled video if stages operation at frequencies in the order of 40 mc . It is also well suited for use as an r.f. amplifier in v.h.f. television tuners.

The 6CF6 features controlled platecurrent cutoff and very high transconductance (6.200 micromhos) combined with low capacitance values. It is provided with separate base pins for grid No. 3 and the cathode.

The heater operates at 6.3 volts and draws 300 ma . The tube may be mounted in any position. The base is of the smallbutton mimiature 7 -pin type. In typical operation, the 6CF6 has a plate voltage of 200 , the suppressor grid is connected to the cathode at socket, the screen grid voltage is 150 , and the grid bias for a plate current of $35 \mu \mathrm{a}$ is -6.5 volts. Except for its sharper cutoff, the 6CF6 is identical to the 6CB6.

END

Save Money With TELESOUND "Package Deals"!

Famous ViDEO 530 DX TV Chassis, Super-powered, complete with receiving tubes. CUR LOW pRice, less picture tube... 39.80					
Order the TeleSound Cabinet you want. combined with Video 530DX chassis. 12" PM Speaker, and your choice of picture tube, at these terrific low prices!					
CABINET STYLE	Combined 17" CRT	with Video 20" CRT	530DX chassis. 21° CRT	$\begin{aligned} & 12^{\prime \prime} \text { PM S } \\ & 24^{\prime \prime} \text { CRT } \end{aligned}$	ker, and 27" CRT
200	\$208.50	$2 \overline{17.25}$	219.50
260	\$216.00	224.75	227.00
300	\$217.75	226.75	228.75	263.75	326.25*
500	\$201.25	210.25	212.25	263.75	326.25*
875	\$230.25	239.00	241.25	276.25	338.50*
875-D	\$275.25	284.25	286.50	321.25	383.75*
1200	\$284.75	293.75	296.00	330.75	393.25 *

OCTOBER, 1953

NEW COAXIAL CABLES JAN APPROVED

SEC. 5V 190A. PRI. 105. 125 VAC. 60 ev. 1 Phase 97 KVA. 35 KV R RMS insulation test
$7^{\prime \prime} \mathrm{K} 10^{\prime \prime} \times 12^{n}:$ weight 80 lbs

HARDWARE ASSORTMENT-Five Pounds Mixed nuls. horlis. washers. rivets. solder lugs. \&
what not. An exulerimenters nikhtmare .

GIANT RESISTOR KIT

GEAR ASSORTMENT

[^8]
RELIANC E MERCHANDIZLiNG co

2221 ARCH ST., PHILA. 3, PA.

NATESA'S FOURTH MEET

Fourth annual convention of the Na tional Alliance of Television and Electronic Service Associations will be held at the Morrison Hotel in Chicago, on October 9, 10 and 11, reports Frank J. Moch, national president.

More than one thousand members of the thirty-five affiliated state groups are expected to accompany the seventy delegates, with an additional five hundred persons representing Chicago area companies, John Cecich, convention chairman, estimated.
This year's plans call for both an industry convention and product display and an open forum, to which the public is invited, and where leading authorities on television maintenance and repair will give set owners an opportunity to air their comments on TV repair service.
The Convention entertainment program will be in charge of Phil Levant, with a gala industry banquet scheduled for Saturday night, Oct. 10th. The educational program will feature Donn Mason, nationally known sales training consultant, and Dr. J. H. Hazlehurst, prominent business consultant and psychologist, both of Chicago.

PENNSYLVANIA LICENSE BILL

Paul V. Forte, executive secretary of the Television Contractors Association, has struck out against Pennsylvania House Bill, HR 839, a law to license television technicians, as "an innocuous piece of legislation." He said it will not accomplish the purpose for which it is intended, to protect the service technician and the customer.
Mr. Forte attacked the bill as unsound and asserted that there is no need for television licensing.
One section of the bill says that just complaints would be recognized and investigated. Mr. Forte said that this was a naive statement, and that there are so many complaints about television service that a fantastically large staff would be needed just to read them, much less determine which complaints are just and which are unjust.

PENNSYLVANIA PARLEY

The Federation of Radio Service Men's Associations of Pennsylvania plans to hold an Eastern Conference in Philadelphia in January, 1954, to discuss television-radio servicing and related industry problems. L. J. Helk, spokesman for the FRSMAP, said that representatives of similar servicing organizations from Maine to Florida are expected to attend.

MIDDLETON ILL

Tom Middleton, former active member in the Philadelphia and Pennsylvania service organizations, has suffered a complete breakdown in health. Tom left Philadelphia for Miami some time ago, with the hope that the climate would improve his condition.
Though his health was poor when he arrived in Florida, Tom became an active influence in the Miami service technicians' organization. His wife has

Examine Free

Take your pick of these authoritative books on modern electronic theory and practice . . . and we will send the ones you select for 10 DAYS' FREE EXAMINATION. Just fill in and mail coupon below.

Prentice-Hall Electronic Books

ELECTRONIC FUNDAMENTALS AND APPLICATIONS, by John D. Ryder. Complete, logical, easy-to-follow treatment of (a) physical principles underlying electron tubes, (b) characteristics of vacuum tubes, (c) all basic tube circuits. 800 pages.

Price, $\$ 10.00$
PULSE TECHNIQUES, by S. Moskowitz, and J. Racker. Covers transient response of linear networks, design of pulse networks, pulse shaping and clamp circuits, pulse generation, measureand aerial navigation aids. 300 pages. Price $\$ 6.65$
ULTRAHIGH FREQUENCY ENGINEERING, by Thomas L. Martin. Theory and technique of ALI. the new fields of electronic engineering: Radar, Telemetering, Electronic computing, Facsimile, Television, Blind landing systems, Pulse-time modulation, and the others. 456 pages. Price, $\$ 8.00$

INDUSTRIAL ELECTRONIC ENGINEERING, by W. L. Davis and H. R. Weed. Covers industrial timing circuits, servomechanisms, electronic control of motors, radio frequency heating and other important uses of electronics in industry toilay.
450 pages.

Price, \$11.35
RECURRENT ELECTRICAL TRANSIENTS, by L. W. Von Tersch and A. W. Swago. Thorough coverage of the basic concepts of recurrent electrical transients, and their application in television, nuclear instrumentation, radar, computing devices, and industrial controls. 399 pages.

Price, $\$ 10.35$
ELECTROMAGNETIC WAVES AND RADIATING SYSTEMS, by Edward C. Jordan. Covers entire field of electromagnetic engincering. Includes propagation as well as radiation and transmission. Fuides treatment of Uadiation and diffraction ground-wave and sky-wave propagation 710 pace ground-wave and sky-wave propagation.
Price, $\$ 10.35$

ELEMENTS OF TELEVISION SYSTEMS, by George E. Anner. Complete basic theory, plus current practice, covering: Closed TV systems, Commercial Telecasting Systems, Color TV Sys-
tems. 804 pages.
Price, $\$ 10.35$

BASIC ELECTRICAL MEASUREMENTS, by M. B. Stout. 504 pages.

Price, $\$ 8.00$
FUNDAMENTALS OF ELECTRICAL ENGINEER:
ING. by Fred A. Pumphrey. 668 pages. Price, $\$ 8.65$
CIRCUITS IN ELECTRICAL ENGINEERING, by Charles R. Vail. 560 pages. Price, $\$ 8.70$

RADIO SERVICING, by A. Marcus. 775 pages. Price, $\$ 5.95$
TELEVISION SERVICING, by Walter H. Buchsbaum. Price, $\$ 5.35$

Carried by leading jobbers everywherel

COMPANY
Spartanburg, South Carolina

informed us that it will be necessary for him to have complete rest, and that they expected to return to Philadelphia in August. Meanwhile the service technicians of Miami were helping to liquidate his business in that city.

NEW TRADE ASSOCIATION

The formation of the Utah Association of Radio and Television Servicemen has been announced by D. Pieper, general manager. The association was incorporated as a nonprofit, educational unit, with the basic purpose of promoting the welfare, progress, and well-being of the radio and television service industry in the State of Utah.

The aims and objectives of the association include the following: Establishment of suggested minimum rates and charges, assuring all members of fair and equitable returns for work and services performed; protection of the industry through voluntary beneficial policies and regulations; promotion of legislation that is affirmative and responsive to the growth and progress of the industry as a whole; and initiation of a broad, comprehensive public relations campaign, to better acquaint the public with the industry.

PHILLY LAUNCHES CAMPAIGN

The Television Service Dealers Association of Philadelphia have announced a series of 18 newspaper advertisements promoting TSDA's members' facilities. A sum of $\$ 1,200$ was voted unanimously by the association to cover the costs of the campaign.

TSDA has set up offices at 6021 Ogontz Avenue, with a central telephone system to channel requests for service to the nearest member shop.

A grievance committee has been appointed to investigate all customer complaints. Industrial and Public Relations Committees have also been set up, with Dave Krantz as chairman of the former and Edward Strychowski of the latter.

THE "SERVICE-SAVER'

A new and unique method of helping television technicians diagnose and repair troubles in a television set was described recently by Carroll W. Hoshour, director of Raytheon Sales Engineering.

The new device, which means "more efficient and economical service" for television set owners, consists of a booklet containing photographs of 40 possible troubles that could occur with a TV set's picture. Each picture is numbered for easy identification. When something goes wrong with the set, the owner calls his service technician and tells him, "My picture looks like number seven, or ten, or twenty-four."

In the Raytheon Service manual that is distributed to all television technicians, there is also a "Service Saver" section that shows the same numbered 40 conditions, and gives schematic diagrams of the circuits and what causes the trouble, plus a complete list of parts and tubes that might be involved. It also contains hints and kinks for quick repair-what to test, and what component might be causing the difficulty. END

ADJUSTABLE ION TRAP

J. W. Miller Co., 5917 S. Main St., Los Angeles, Calif., has developed the new type 6285 single-field adiustable ion trap hoving a variable gauss range of 32 to 55 . The strength of the magnetic

field is varied by turning a small screw which moves a slug back and forth in the field of the ion-trap magnet.

TEST SOCKET ADAPTER

Pomona Electronics Co., 524 W. Fifth Ave.. Pomona, Calif.. has announced the Peco TVS-1 Duo-Decal test socket adopter. The unit permits operating television tube socket while the set is elevison tube socket while the set is

The TVS-I is inserted between the C-R tube base and its socket to complete the circuit and make all connections accessible to meter test leads. Measurements can be mode without tracing circuit wiring to test points below chass is

AUDIO TRANSFORMERS

Triad Transformer Corp., 4055 Redwood Ave. Venice, Calif., has added the JAF series of miniature audio trans. fransistor or tube amplifying equip ment these magnetically shielded ment, these magneticaly cover the herficalle cover the audio-frequency range.

THE BEST SET IS ONLY
AS GOOD AS ITS ANTENNA!
KAMOMNES ANTENNA co. BOX 586, ROME, GA.

BJ-1

 zar counhor contact your jobber or write for hame of nearest distributor. tho PR, Pend

The JAF line is available in standard MIL cases with mounting studs so arranged that transformers may be mounted in closest possible proximity to each other. Information for each ly attached decal.

TV REMOTE CONTROL

Blonder-Tongue Laboratories, Inc., 526 536 North Avenue, Westfield, N. J. is distributing the new $R C$ l remote control unit for controlling TV boosters many other remote electrical acces sories from a single on-off switch. The control unit consists of the RCI-P
power unit and the RCI.R remote unit. The RCI-P plugs into any 117 -volt a.c. outlet and receives the line cord of other device containina the a.c. line other device containina the a.c. ine switch. dicator light, and fuses. The RCI-R. dicator light, and uses. The RCI-R trolled, is connected to the power unit through a single heavy-duty 300 -ohm line. This line carries a.c. to the remote apparatus and serves as a transmission line for $T V$ signals coming

down from the antenna. Both sides of the slave unit are fused 'to comply with the code of the National Board of Fire Underwriters. Anv unit drawing 100 watts at 117 volts can be operated at distances up to 1,000 feet or more

UHF CONVERTER

Walsco Electronics Corp., 3225 Exposition Place, Los Angeles, Calit. is introducing the new Wolsco Imperial all-channel u.h.f. converter which features the new Turrefune tuning system -a turret-type bandspread tuning unit with a double-tuned preselector.
The tuned circuits have a constant L-C ratio throughout its range. The oscillotor uses o balanced-line circuit for minimum frequency drift. Input terminals are provided for separate

u.h.f. and v.h.f. antennas. The cabinet is available in a wide variety of colors to blend with modern interiors.

VHF YAGI

Technical Appliance Corp., Sherburne N. Y. has announced a broad-band. riple-driven v.h.t. Yagi for channels 2-6. The antenna consists of three directors and three driven elements, plus reflector. Gain is of the order of 7 db throughout the low band.
Primarily designed for fringe areas receiving two or more low-band channels, the No. 1840 antenna is also recommended for areas in which a channe! change is contemplated. This new antenna eliminates the need for

multiantenna installations for low band reception and the ensuing mutitransmission lines and switching de vices otherwise emploved.

V.H.F. ANTENNA

Wells \& Winegard, Burlington, lowa has introduced the model CP-I Clipper v.h.f. antenna for fringe areas. Manu acturer claims high uniform gain and good front-to-back ratio

CRYSTAL MICROPHONE
Shure Brothers, Inc.. 225 W. Huron St., Chicago 10, ill. has announced an all-purpose crystal microphone, the model 777 . This unit can be used on desk or floor stand. in the hand, of

The model 777 has a frequency re sponse of $60-10,000$ c.p.s. is $41 / 2$-inches long $\times 1$-inch wide, and is finished in chrome.

INDOOR U.H.F. ANTENNA

The Hi-Lo Antenna Corp. 3540 N . Ravenswood Ave. Chicago i3. III. has onnounced their madel 303 Twin Arrow indoar antenna for u.h.t. The twin arrows may be adiusted for local areas. The upright and crossbar are gold-colored. and the base is of light. weight brown plastic

HOME MUSIC ASSEMBLY

Radio Croftsmen, Inc., 4401 N. Ravens wood Ave., Chicago 40, 111., has an nounced a home music assembiy for the high.tidelity enthusiost.
music system are a complete homemusic system are provided in a sinmounting board all necessory con necting bobes an necessary con detailed cabet mounting hardware, structions, and drowings connecting in cabinets, ineluding a horn-loaded corner speaker cabinet.

Included in the assembly. known as the Craftsmen CAl are the CIO FM-AM tuner. a C400 10 -watt amplifier, a 3 soeed automatic record changer, and of 40 -inch speaker system with a range

SIGNAL GENERATOR

Hickok Electrical Instrument Co., 10514 Dupont Avenue. Cleveland 8, Ohio has announced the model 292XAL air line microvolt signal generator, which provides continuous coverage from 125 kc to 165 mc on fundamentals.
The generator covers the aircraft band, including all the necessary in termediate frequencies and covers all radio frequencies with calibrated out-
put. It can be externally modulated from 15 to 10,000 c.p.s.. and measures both input and output of units under test.

COLOR CODE UNIT

Centralab, Division of Glabe Union Inc., 900 E. Keete Ave. Milwaukee Wis., is producing a color code calcu-
lator covering both capacitors and lator covering both capacitors and The col
The calculator is printed in full color By sefting seven rotating wheels. ca pacitance or resistance, tolerance, and temperature coeflicient can be read directly. The calculator covers RETMA and extended-range tubular ceramic capacitors and radial. or oxial-lead resistors.

WALL BAFFLES

Utah Radio Products Co., Inc., Huntingtan, Ind, has announced the Utone line of wall baffles. They are obtainable in 6,8 -, 10 -. and 12 -inch sizes and unfinished.

REPLACEMENT UNITS

The Standard Division of the Chicago Standard Transtormer Corp., has added five TV replacement components They include a
ment include a new exact replaceexact duplicate of Hofman used in 25 Hoffman models and chas. sis, and A-8126, universal philco re placement vertical blacking oscillator transfarmer. A-8126 can be used in all Phico TV models and chassis built up to the spring of 1953.
Two width controls. WC-I and WC-4 ond a tapped linearity coil, WC-2 also have been added.

THE BEST ALL CHANNEL UHF-VHF ANTENNA NX'AILABLE!" says - Whding Alabama Dealer
 Meythe have tested more theppos different antennas in our fiftectr for a good performero. Uhír channel 48 and our poce:yHF channel 10 . . and yapiswis all-channel UMF-VHI PTHENo did the job that athars yotifet do ... and in addition perffytite superbIy es a fringe : Cliening on ehannel 6, New 0 Mhe over 150 miles awayl'

K-I Aniennas ere so?
through selected distrit though selected distrit
butors only... write for butori only... writeofor name of

THE BEST SET IS ONLY AS GOOD AS ITS ANTENNA!
"Pal, Appliad ifor
KAKOWNES
ANTENNA CO.
BOX 586, ROME, GA.

VOLTAGE REGULATOR
Perma-Power Co.. 4727 N. Damen Ave. Chicago 25, lll. has announced a TV voltage regulator, which returns full height and width of picture when it is distorted by low line voltage.

The unit has a 300 -watt rating. A selector switch permits boosting lowering of voltage.

HIGH-FIDELITY SPEAKER

Oxford Electric Corp., 3911 South Michigan Ave., Chicago 15, III., has announced The unit has a freduency
HFISLN. Theaker range of 50 to $10,000 \mathrm{c}$.p.s., a 14 -aunce Alnico V magnet, 25 watts power rating, an input impedance of 8 ohms and a $11 / 2$-inch.diameter voice coil.

TVI ANALYZER

Tele-Matic Industries. Inc. Joralemon St.. Brooklyn I. N. Y., is producing a St. Brooklyn I. N. Y is producing a
TVi analyzer to identify TV interfering signals.
signals. wave trap or filter is needed to eliminate interference. The analyzer contains a high-pass and ignition filter
section, an a.c. line filter section, and a full range of calibrated wave traps. The unit is housed in a compact steel case with carrying handle meosuring $51 / 2 \times 7$-inches, and can be carried
in a service technician's kit in a service technician's kit.

AUDIO ITEMS

RCA Victor Division of RCA, Camden, N.J., has announced three audio equipment items for AM-FM and TV stafions. These are the tyoe BA-12A utility amplifier, the LC-6A speaker mechand a microphone boom stand.

The BA-12A amolifier can serve as a microphone preamplifier, a turntable booster amplifier, a ine amplifier, or an isolation amplifier. The 2 -stage unit to 15,000 cycles.

LEARNER'S KIT

Progressive Electronics Co., 497 Union Ave., Brooklyn II N_{M} Y. has antures a new instruction book and a newly designed tester and manual. Circuits of a signal tracer, code oscillator, receivers and transmitters are included.

NEW CAPACITOR

Cornell-Dubilier Electric Corp., South Plaintield, N. J, has developed a molded tubular capacitor, the CUB. for general replacement service.

The unit is molded in mica-bose bakelite. The 200 - and 400 -volt series are impregnated with HT compound, and the "600-volt and up series with processed and sealed immediately after impregnation

NEW OSCILLOGRAPH

The Instrument Division. Allen B. DuMold Ave., Clifton, N., 160 Bloomnounced that an electrical equivalent of the well-known Du Mont type 304-A cathode-ray ascillograph is now avail. able as a rack-mounted unit. The rock-mounted version is designiated as the type $304 \cdot A R$. and features the same built-in voltage calibration as the type $304-\mathrm{A}$. The illuminated screen is specially calibrated for reading any portion of the signal directly in. volts. The screen is calibrated by a pushbutton control on the operating panel which applies a standardizing potential to the screen-
The type $304-A R$ incorporates a flatfaced, tight-tolerance cathode-ray of measurement Voltage-reading range of measurement. Voltage-reading range On a 4 -inch scale is from 0.10 volt to sponse is ftat at d.c. and extends to $300 \mathrm{kc}, 50 \%$ down. es are from manufacturers' data.

WANTED

By DEALERS, SERVICEMEN and others.
Suspected of willfully aiding and abetting them in saving time and satisfying customers.

Name . . . WALDOM'S AUTO KNOB ASSORTMENT
Description . . 70 CRONAME tenite knobs in assorted colors. Knobs are $7 / 8^{\prime \prime}$ in diameter and will fit $3 / 16^{\prime \prime}$ flatted shaft. Set screws included. Housed in attractive display box. Answers to No. A-13124

For the very best yet in

READ SCIENCE-FICTION PLUS

December issue on sale October 9

Read the exciting and stimulating stories of science.fiction masters like Harry Bates, Murray Leinster, Eric Frank Russell and many, many others Ponder over the challenging article "Extra-Terrestrial Communication" by Leslie R. Shepherd. See the finest science illustrations published anywhere, by such top flight artists as Frank R. Paut Virgil Finlay and Lawrence.

On sale at all better newsstands, 35 c.

BUILD 15 RADIOS
 ONLY AT HOME ${ }^{\text {sin }} 19{ }^{95}$ Progressive Radio "EDU-KIT"
 NOW INCLUDES SIGNAL TRACER and CODE OSCILLATOR
 - FREE TOOLS WITH KIT
 - ABSOLUTELY NO KNOWL. EDGE OF RADIO NECESSARY
 - NO ADDITIONAL PARTS NEEDED
 - EXCELLENT BACKGROUND FOR TV

- 10 DAY MONEY-BACK GUARANTEE

WHAT THE PROGRESSIVE RADIO "EDU.KIT" OFFERS YOU
The Progressive Radio "Edu-kit", offers you a home study course at a rock
mprice. Our Kit is designed to train Radio Technicians, with the basic facts of Radio Theory and Construction Practice expressed simplyand clearly. You will gain a knowledge of basic Radio Principles involved in Radio Reception hadio
Transmission and Audio Amplification.
You will learn how to identify Radio Symbols and Diagrams; now to build You will learn how to identify Radio Symbols and Diagrams; now to build
radios. ussing regular radio circuit schemmatics: how so mount various radio parts:
how to wire and solder in a professional manner. You will learn how to operate radios, using regular radio circuit schematics: how Yo mount various radioparate
how to wire and solder in aprofessional manner. You will learn how to operate
Receivers, Transmitters, and Audio Amplifiers. You will learn how to service and Receivers, Transmitters, and Audio Amplifiers. You will learn how to service and
srouble-shoot radios. You will learn code. You will receive training for F.c.c. license. brief, you will receive a basic education in Radio exactly like the kind you

THE KIT FOR EVERYONE

who has a dogessive Radio Edu-kit, was specifically prepared for any person and old in all parts of the worid. It is not necessary that you have beven the slightest background in science or radio. tional Guigance and Training: kis' are ince Progressive Radio 'Edu.kit' requires no instructor. All instructions are includded. Al parts are individually boxed, and identified by name, photoyraph
and diagram. Every step involved in building these sets is carefuliy explained
You cannot make a mistake.

PROGRESSIVE TEACHING METHOD
The Progressive Radio "Edu-kit", comes complete with instructions. These
instructions are arranged in a clear, simple and progressive manner. The theory Of Radio Transmission, Radio Reception, Audio Amplification and servicing by
Signal Tracing is clearly explained. Every part is identified by photograpn and Signal Tracing is clearly explained. Every part is identified by photograpt and
diagram. You will learn the function and theory of every part used, The Progressive Radio "Educkit" uses the principle of "Learn by Doing".
Theretore you will build radios to illustrate the principles which you tearn Therefore you will build radios to illustrate the pritciples which you learn.
These radios are desioned in a modern manner, according to the best principles
of present-day educational practice. you begin by buiding simple radio. The of present-day educational practice. You begin by building a simmest ratio. The
next set that you build is slightly more advanced. Gradually, in a progre next set that you build is slightly more advanced. Gradually, in a progresgive
manner, you will find yourself constructing still more advanced radio sets, and
doing work like a professional Radio Technician. Altogether you wild build firteen doing work like al professional Radio Jechnician Altogether you will build firteen
radios. includina Receicrs. Transmiters. Amolifiers, Code Oscillator and Signal
Tracer. These sets operate on $105-125$. Ac/DC.

THE PROGRESSIVE RADIO "EDU-KIT" IS GOMPLETE rou will receive every part, necessary to buitd 15 different radio sets, our
kits contain tubes ébee sockett, chassis, variable condensers. electrolytic conkits contain tubes, eube sockets, chassis, variable condensers, electrolytic con-
densers, mica condensers. paper condensers, resistors, line cords setenium recti-
fiers, tie strips, coils. hardware, tubing, hook-up wirt, solder, eic. Fiers, tie strips, coils, hardware, tubing, hook-up wiro. Solder, etc. so that you can easily identify every item. Toops are included, as weal as an
Eiectrical and Radio Tester. Complete, easy-to-follow instructions are provided.

TROUBLE-SHOOTING LESSONS
Trouble-shooting and servicing are included You will be taught to recognize
and repair troubles. You will build and learn to operate a professional signal and repair troubles. You will build and learn to operate a professional Signal
Tracer. You receive an Electrical and Radio Tester, and learn to use it for radio
 far exceed the cost of the "Edu-kit", Here is your opportunity to learn radio quickly and easily, and have others pay for it. our consultat

FREE EXTRAS

- ELEGTRICAL AND RADIO TESTER - ELEGTRIC SOLDERING IRON - BOOK ON TELEVISION - RADIO TROUBLE-SHOOTING GUIDE - MEMBERSHIP IN RADIO-TELEVISION GLUB - CONSULTATION SERVICE - QUIZZES - TRAINING FOR F.C.C. LICENSE

nd me 'Edu-Kit' with 10 Day Money-Back

 Guarantee-include All FREE extrasCheck or M.O. enclosed-postage prepaid
\square Send further informa. C.O.D. (U. S. Only) -1 will pay postage tion
Outside U.S.A.-cash orders only: send intern't'l M.O. or check Prepaid. "Edu-Kit'" for 210-250 V. AC/DC $\$ 22.45$

PROCRESSIIIE ELEGTROUICS CO.

497 UNION AVE., Dept. RE-76, Brooklyn 11, N. Y.

NEW PATENTS

STABLE D.C. AMPLIFIER

Patent No. 2,620,406

Robert P. Nelson, Southbridge, Mass. (Assigned to Philco Corp., Philadelphia, Pa.)
Direct-coupled circuits must be used for amplifying d.c. or very low frequencies, but unfortunately the gain of any circuit that responds wo slow signal variations is also affected by even minor fluctuations in supply voltages. These changes in crain can be minimized by using carefully balanced push-pull stages throughout, large amounts of inverse feedback, and closely regulated power supplies, all of which call for very complex circuit arrangements.
This invention is a single-ended direct-coupled amplifier that is compensated against the effects of changes in supply voltages. The first two triodes (12AX7) are the d.c. amplifier. The third triode (one half of a 12AU7) draws considerably more plate current than the output section of the 12AX7, and determines the voltage drop across R1.

The bias on V2 is the sum of the drop acioss R 1 and the negative voltage from the \mathbf{C} supply at the slider of potentiometer \mathbf{Y}. If the \mathbf{C} supply voltage increases, the grid of V2 goes more negative. At the same time the V3 grid also receives a more negative bias. This reduces the current through R1. At the correct setting of potentiometer \mathbf{Z}, the change in $\mathbf{V} 3$ current will restore the bias on V2 to normal.
V1 is especially sensitive to changes in the B supply because these variations are amplified by the following stage. Assume an increase in the supply voltage. This increases the V1 cathode current and raises the bias on its grid. The increase in bias reduces the cathode current again -but not necessarily to the original level, unless the cathode resistor has a certain critical value. By making the cathode resistor adjustable, a setting can be found that will hold the VI plate current constant regardless of changes in the B supply voltage.

According to the inventor, circuit adjustments should be made in the following order: First set \mathbf{Y} for desired output. Then adjust \mathbf{Z} to compensate for drift in the bias supply. Finally, set X to neutralize variations in B voltage.

DELAY CIRCUIT

Patent No. 2,635, 185
Robert F. Casey, Pompton Plains, N. J. (Assigned to Allen B. Du Mont Laboratories, Inc., Clifton, N. J.)
Delay circuits are sometimes troublel by timejitter. Hum modulation, thermal agitation, voltage drift, and other circuit variations may affect the delay interval and cause erratic operation. The circuit shown here has been engineered to prevent time-jitter. The input signal-a negative pulse-initiates a square-wave output. The wave lasts for a short but definite time. The interval between the leading and trailing edges of the square wave is the desired time delay. It remains constant and under control at all times.
The 2-tube circuit functions as follows:

Le New Manual big single volume receivers. In In this use, ext la large schentatics easy-toaligmment data, schentactics. needed ists. voltage values. and information on stage gain, location of stmingers. ford dia every 1953 radio. Ginnt every 1953 radio. Giant
size, $81 / 2 x 1^{\prime \prime}$; mannal
strle, sturdy binding.
prine, only

New Supreme 1953 Radio Manual

Now you can henefit and save money with Supreme amaz ing seoop of 1953 . This one giant volume has all the service data you need on all recent radio sets. A full year of models of all popular makes, home and auto sets, portable radios, combinations, ehangers, all included. The full price for this mammoth 1953 manual is only $\$ 2.50$, nothing else to buy for a whole year. Other Supreme radio service volumes for previous years (mostly at \$2), TV, and UHF manuals are described below and at right

SUPREME RADIO MANUALS FOR PREVIOUS YEARS

money. Here is your lowest-priceri service fata Cocers all years, from make more

 all neefled diagrams, parts lists, aligment facts, and service hinss. at the smalles

SUPREME TELEVISION SERIES

Here is vour comulete soumee of TV and

 UHF service data. These mamals at only $\$ 3$, $\$ 2$, and $\$ 1.50$ each are amazing bargains and defy combetition. Each mannal covers a Whole year of models, using original factory material. Include giant double-spread cir cuits and blueprints, alignment procedure, voltage charts, test patterns, wave forms factory rewnons, and help service hints $\begin{array}{ll}\text { Select rolumes from list below and send } \\ \text { no-risk coupon. } \\ 1953 & \text { TV, } \$ 3\end{array}$

New giant volume
of TV factory data of TV factory data
his everything you need on recent nets. 192 pages. $81 / 2 \times 11^{\prime \prime}$, + dou$8 / 2 \times 11$,
ble-spread blue-ble-spread blue-
prints. Only. .. $\$ 3$ 1952 TV Mantual, $\$ 3$ 1951 TV Manual, $\$ 3$ 1951 TV Manual, $\$ 3$
1950 TV Manual, $\$ 3$ 1950 TV Manual, \$3 1949 TV Manual, $\$ 3$
1948 TV Manual, $\$ 3$ 1947 FM \& TV, $\$ 2$ 53 UHF Units $\$ 1.50$

RADO-ELECTRONICS

NEW AMAZING HOME-STUDY COURSE OFFER

Here is the most amazing bargain in electroni
training. For only $\$ 3.95$ (full price) you receic a complete course of 53 large lessons. Covers every topic of radio. electronics, with large lessons on TV M, audio. etc. As an extra, every page has teacher comments to guide yot? and supply additional help Includes
drawings,
self-testing ques. questions. thi
diakrams. Corutares lesson-by-lesson with the
best $\$ 200$ home-study correspondence best $\$ 200$ home-study correspondence
courses. Price comblere. 3 -in-1 volcourses. Price comble
une. 53
lessona,

Supreme Publications Sold by all Leading Redio Jobbers

NO-RISK TRIAL ORDER COUPON

 SUPREME PUBLICATIONS, 1760 Balsam, Highland Park, ill. Radio Diagram Manuals | Send Radio Manuals checked \boxtimes at left and Tv Man \square Net 1953 Mannal, $\$ 2.50$ | uals below. Satisfaction guaranteed or money back $\square 1952$ Radio

1. A negative pulse applied to the quadrature grid of the $613 \mathrm{~N} G$ reduces the blate current very little, but "partition action" increases the acceleratorgrid current considerably. The voltage on the accelerator drops and feeds a negative pulse through $\mathbf{C l}$ to the grid of the 6 C 4 .
2. The triode blocks, and the sudden disappear ance of cathole current permits C 2 to discharge through L . The time required for C 2 to discharge depends on the natural resonant frequency of the tank circuit. The discharge places a negative voltage on the limiter grid of the 6BN6.
3. This blocks the gated-beam tube and its plate voltage rises abruptly to the $B+$ value. This starts the square-wave output. It lasts until the vollage across C2 reverses polarity-that is, becomes posi tive. The diode now damps out the oscillation and removes the bias from the limiter grid. The 6BN6 conducts, its blate voltage drops to the original value and there is no further output till the next sugnal pulse arrives

The delay interval depends only upon the na tural resonant frequency of L and C 2 . It cannot be changed by other components or supply voltages.

FLUOPESCENT DISPLAY

Patent No. 2,635,215
Frank M. Shoemaker, Pittsburgh, Pa. A fluorescent lamp (even one that's burned
out) will glow in an r.f. field. This invention

uses this principle for display purposes. Fluorescent tubes are shaped to form characters and are placed in an r.f. field. If the r.f. oscillator is keyed on and off periodically, the characters or letters will blink.
The schematic shows a triode r.f. oscillator tuned to a relatively low frequency, (for example 120 kc) to reduce harmonic interference to broadcasting. Harmonic radiation is reduced still further by inductive coupling between circuits and by designing them for high Q. An antiparasitic resistor \mathbf{R} is connected in the grid lead. The switch S is opened and closed automatically The switch S is
to flash the sign.
The load capacitance \mathbf{C} is made up of strips of metal foil. The r.f. field exists between them The fluorescent characters are placed on shelves where they rest within the field. Unlike a neon sign, these letters are not connected to each other or to any source of voltage, so they may be moved about as required as long as they remain within the r.f. field.

ARC SUPPRESSION

Patent No. 2,637,769
(Assigned to Westinghouse Brake \& Signal Co., Ltd., London, England)
When an inductive circuit is interrupted suddenly, the energy stored in the magnetic field induces a e.m.f. which may be many times greater than the original voltage. This induced voltage may force an are discharge across the opened contacts. Repeated arcs will ruin relay or switch contacts and every eltort should be made to avoid them. This patent discloses a simple method to suppress arcing.
Fig. 1 applies to d.c. circuits. L may be the winding of a relay or electromagnet. The rectifier is connected so that it cannot comluct while the switch is closed. When the switch opens, the d.c.-input circuit is broken and a counter-e.m.f. is induced in the winding L. This induced voltage appears across L with the opposite polarity to the original input voltage but in the right polarity for the rectifier to conduct.

If the rectifier alone were connected across L, it would have to be large enough to dissipate all
the energy stored in the winding almost instantly 13ut by connecting the bias battery in series with the rectifier, L cannot discharge until the induced e.m.f. is greater than the bias voltage. This limits the discharge current through the rectifier, so

Fig. 1-Rectifier and bias across L.
that a relatively small unit can be used, and the storel energy is dissipated not in the rectifier, but in the battery.
Fig. 2 is a bridre-type arc suppressor for an a.c. circuit. Here the energy represented by the

Fig. 2-Bridge rectifier for a.c. circuits.
e.m.f. across L is induced in a secondary winding. As before, the energy is dissipated within the biasing battery, and does not go back into the a.c. circuit.

The voltage induced by a rapidly falling mag. netic field, such as that occurring when a circuit is opened, is often dangerous to life, especially in a heavily inductive circuit. For circuits of this type, the rectifiers should be of sufficient size to dissipate the heat created by a large current flow. This is true even in circuits which use a capacitor across the circuit switch to absorb much of the surge. When used in circuits with electric motors, values should be carefully computed.

NEW 1954 EDITION TV CONSULTANT the TV SERVICEMAN'S SILENT PARTNER

New, easy-to-use way to solve toughest TV troubles. UHF sect. Includes
conrersions, lostaliations and servicconcersions, Installations and servic-
ing. Modern alignment methods shown by pietures, dagrams and simple directlons, tell exactly that to do and hot io rlo if. Practlest pointers on use of all TV Test Instruments.
Orer 300 nix, raster and sound symp. toms. Detalled directions tell whers and how to find tallts parts. Over 135 RAPIO CHECKS. many using lustr. of scope wave forms, diagrams, station patterns how rarious defects-take mystery out of TV servicing. NO THEORY-NO MATH-NO FORMULAS Just pratilical service info. coverifig all types of TV sets.

NEW! Trouble Shooting PIX GUIDE incl. TV TERMS Explained

new! TV TUBE LOcator

Money-Making Time Saver tells which tubes to replace to cure every
type of tube trouble. Over 135 such TV trouhles listed with clear charts for cuickly locatlay the fauty tubes. CODVIGhted TROURLE INDICAT:
ING TUBE LOCATION GUIDES ING TUBE LOCATION GUIDES
for over 3000 most popular models from Ainilral to Zentth. 1947 to 1953 models. A storehouse of valt. ahle TV sersleing info. priced very
low for large rolume sales. low for large rolume sales.
only........ $\$ 1$

NEW! TV TROUBLE TRACER
70 Common TV trouhles traced to source and cured. Copyrighted trouble indicating tube location guidles TV models. Many models different from those shown in TV TUBE LOCATOR.
Contains over 70 Illustrations and tube location guldes. Forty mos with symptoms described, causes given and remedles prescribed.
Only

H. G. CISIN, PUBLISHER
Order from your Jobber todory, or if not
Enclosed find \$......... Send
\square TV Consult'nt [TV Locator
$\square \mathrm{TV}$ Pix Guide \quad IV Tracer
Name
Address

CHEVROLET 985793 RADIO

Several of these sets have been brought in with complaints of distortion and intermittent operation. In each case, the fault was traced to the spark plate connection which bypasses the 6SQ7 plate. This section of the spark plate develops a high-resistance to ground and causes the trouble. When we eliminated this connection from the circuit the trouble cleared up with no noticeable effect on reception.-Geo. R. Auglado

DEAD AUTO RADIOS

When servicing dead auto radios, I have a procedure for checking the power supply quickly so I will have more time to track down the trouble if it is in some other part of the set. The circuit of a typical vibrator supply is shown in the diagram. This is the procedure:

1. Check for 6 volts d.c. across the input to the supply. Measure the voltage at a point between the set and the fuse. Low voltage at this point when the 6 -volt supply is perfect indicates excessive voltage drop in the supply line. Check the fuse holder for high resistance. If the fuse is blown, check the vibrator and make a resistance check to make sure that there are no

shorts in the transformer or filter.
2. Measure the voltage across the primary of the transformer. There should be 6 volts a.c. across each half and 12 volts a.c. across the full primary. No voltage is a symptom of a defective vibrator.
3. Measure the voltage between the rectifier plates. Average a.c. voltage measurements show 400 volts or more between the plates and 200 volts or more from each plate to ground. No voltage is indicative of a defective transformer. If a buffer capacitor is connected between the rectifier plates, it should be checked for a short or leakage.
4. Measure the voltage between the rectifier cathode and ground. It should be 200 volts d.c. or more. Low voltage is probably caused by a weak or burnedout rectifier tube.

Loss of signal or d.c. voltage at other points in the set may be caused by defective spark plates. Check the schematic for the location of spark plates and check each one for a short.A. von Zook

RCA KCS66 TV CHASSIS

When the set was first turned on, sound came in normally for a few seconds and then dropped out when the raster appeared. There was no evidence of video modulation on the raster. The a.g.c. bias was normal (about 0) until the raster appeared and then falls to 35 volts negative.

This trouble was caused by an open

ALSO AVAILABLE Y.V. CHASSIS
All sets have full 1 yr. factory picture tulie warranty. and standard 90 day RTMA parts warranty. MAIL and Phone orders filled. $\$ 25$ deposit, Balance C.O.D., Shipping Charges Add'l.

STEPHEN SALES CORP.

45 Cronby Se., N. Y. 12, Phono WO 4.15233

- HERE IS LATE INFORMATION INA HANDY FORM FOR RADIO \& TELEVISION REPAIRMEN, SERVICEMEN \& STUDENTS

2 10 COMPLETE $\$$ A A
 IT PAYS TO KNOW!

AUDELS T.V.-RADIO SERVICE LIBRARY presents the important subjects of Modern Radio, Television, Industrial Electronies. F.M. Public Address Systems, Auto, Marine \& Aircraft Radio, Phonograph Pick-Ups, ete. Covers Basic Principles-Construction-In-stallation-Operation - Repairs - Trouble Shooting. Shows How to get Sharp. Clear T. Vi Pictures. Install Aerials-How to Test. Explains Color Systems \& Methods of Conversion. 1001 Facts-Over 1260 Pares- 625 for Quick Reardy R Diagrams-Valuable or Quick Rend Reference Home sudy. Tells How to So年wers T. \& Radio Questions.
Get this information for Yourself.
7 DAY TEST-ASK TO SEE ITI
MAIL ORDER
AUDEL, Publishers, 49 W .23 St. N.Y. 10 Mail AuDELS T.V. RADIO SERVICE LleraRY 2 Yoy: S6

Name-
adres
Employed by

model JEB-10

CONTROL CASE-IU $21 / 2{ }^{\text {m }}$ high mahogany color; one swich instantly reverses or stops totor.

Have you read these Gernsback Library Books?

Radio \& TV Test Instruments-No. 49

How to build just about every instrument required for modern TV-radio servicing. 128 Pages. $\$ 1.50$

Radio \& TV Hints-No. 41
Over 300 hints, gimmicks and sliort cuts on radio. TV and Audio. Seven sections. 112 Pages. $\$ 1.00$

Radio Tube Fundamentals-No. 45
How and why tubes act as they do in modern radio circuits. Written for the service technician. 90 Pages. 74 Illustrations.

Model Gontrol By Radio-No. 43

Remote control of model planes, boats and trains. Theory and construction details. 112 Pages. 114 Illustrations.

Public-Address Guide—No. 41
Covers every phase of PA installation and maintenance plus construction details on an all around system. 80 Pages. Illustrated.

Practical Disc Recording-No. 39
Covers theory and practical techniques. A full chapter for each important recording component. ${ }_{96}$ chapter for each important recording component.

Published by Gernsback Publications, Inc. Publishers of
RADIO-ELEGTRONICS

High-Fidelity-Design, Construction, Measurements-No. 48

New 3-way approach on how to get top perform ance from a high-fidelity system. 128 Pages. $\$ 1.50$

Television Technotes-No. 46

Cuts routine trouble shooting time. Causes and cures of over 600 specific troubles. 128 Pages. $\$ 1.50$

Basic Radio Course-No. 44

John T. Frye's classic on fundamentals makes learning theory fun-from Ohm's Law to advanced techniques. 176 Pages. Cloth cover.

High-Fidelity Techniques-No, 42

One of the best written and most informative books on high-fidelity written at any price. By James R. Langham. 128 Pages. Illustrated. $\$ 1.00$

See your distributor-or mail this coupon

| GERNSBACK PUBLICATIONS, INC., Dept. 103
125 West Broadway
New York 7, N. Y.
1 Enclosed is my remittance of $\$$
-...._-_
I Please send me the following books postpaid.

circuit in resistor R 131 (the 2,500-ohm, 10 -watt wirewound resistor between the 265 - and 143 -volt B plus lines). This is a voltage-dropping resistor which supplies reduced B plus voltage to the sync and a.g.e. circuits and holds the cathode of the 6CB6 a.g.c. amplifier at 100 volts positive. The grid of the 6CB6 is supplied with 80 volts positive from another source. When R131 opens, the 6 CB 6 cathode voltage drops below the grid. This renders the 6 CB 6 highly conductive to pulses from the horizontal sweep circuit and causes the development of excess a.g.c. bias. Excess bias cuts off the i.f. amplifier and blocks the sound and picture signals.

Replace the resistor to clear up the difficulty.-George DeLaMater

OSCILLATIONS IN PHILCO 645

Squeals and birdies on the high end of the $3-6-\mathrm{mc}$ band are usually caused by oscillations in the 6A7 converter. This can sometimes be eliminated by trying several 6A7's until you find one which does not oscillate.

If the trouble cannot be eliminated by substituting 6A7's, try replacing the $15,000-\mathrm{ohm}$ oscillator plate-dropping resistor (part 72 on the Philco schematic) with a 1 -watt resistor of 25,000 to 40 ,000 ohms. The schematic shows the

position of this resistor in the circuit. Use the lowest value which results in an oscillator anode voltage of 70 to 85 . If the converter performance drops off, increase the capacitance of the oscillator injection gimmick which is mounted on top of the tuning capacitor.

This type of trouble may also occur in other makes and models of old sets when a 6 A 7 is replaced with a new one-G. P. Oberto

SEARS, ROEBUCK TV SETS

When one of these sets comes in with no high voltage and no obvious defect in the sweep and high-voltage circuits, take a look at the 1B3-GT high-voltage rectifier. In many instances, you will find that someone has installed a G-E 1B3-GT.

G-E 1B3's will not work in many Sears receivers because pins 1, 2, 3, 5, and 8 are connected internally. The socket is wired so that the high voltage is automatically grounded out when this type of 1B3-GT is used.

Substituting a 1B3 of a different brand will usually eliminate the trou-ble.-Raymond W. Calvert

OCTOBER, like September, will produce very little in the way of ionospheric $d x$. The early fall is one of the low spots of the year for sporadicE skip. October will provide interest to the observer who likes to check the effects of weather variations on TV reception. Tropospheric $d x$ will not equal the summertime skip in miles spanned, but it often provides steady or nearly steady signals from far beyond the normal range at this season of the year.

The best tropospheric propagation is usually associated with the changing seasons, so it will have passed its peak in the more northerly parts of the country in September. Below the MasonDixon Line, October may be at least as good as its predecessor. Worth watching in the North will be the effect of diminishing foliage, particularly where u.h.f. reception was begun during the green-leaf months. The removing of foliar screening may more than make up for the drop in signal levels that will accompany the arrival of cooler weather in the northern states and Canada, particularly in hilly terrain, or in sites where antennas aim directly into dense growths of deciduous trees.

Dx on u.h.f. continues to lag behind v.h.f., due primarily to the relatively poor performance of the majority of u.h.f. receivers. The summer of 1953 brought numerous instances of communication by amateurs using the 420 mc. band over distances exceeding 300 miles. This was done with power levels that are but a small fraction of those employed in u.h.f. TV transmission on only slightly higher frequencies. The hams have vastly superior receivers and antenna systens, so it seems only a question of time before u.h.f. TV receiving techniques will catch up. When this happens, tropospheric dx of 300 miles or more may be observed on u.h.f.

What the limit of u.h.f. dx will be is anybody's guess, but strong signals on the 420 -to- $450-\mathrm{mc}$ band exchanged by hams over distances in excess of 400 miles will give some inclination of the possibilities.

CORRECTION

There is a discrepancy between the diagram and the text of the article "Tube-Filament Checker" on page 90 of the June, 1953, issue. The text specifies a 5 -ma meter and the diagram specifies 500 ma . The value of $500 \mathrm{mil}-$ liamperes on the diagram is correct.

We thank Mr. Allan W. Seely, of Danvers, Mass., for calling this to our attention.

STANDARD BRANDS TUBES ALL RADIO \& TV TYPES

Standard Warranty . . . Bulk Packed or Individually Boxed

For one antenna with two TV sets
Reduces effects of local oscillator radiation from one TV set to another
Uses high efficiency transformers
Filter action reduces interference at IF frequencies
For most sets, 72 or 300 ohm input

Sold only through authorized VIDAIRE distributors send for catalog B

Vidaire $=$ wase

Factory: LYNBROOK, N. Y.
Nat'l Sales Office: 6 E. 39th ST,, N. Y. 16, N. Y.

Manufacturers of:

- TV COLOR EQUIPMENT
- TV AMPLIFIERS
- ELECTRONIC DEVICES

Phone No.: LE 2-7372

PHOTOGRAPHS

RADIO-ELECTRONICS can use good photographs of service benches, service shops, high-fidelity audio layouts, and any other interesting and original radio-electronic devices.
We will pay $\$ 6.00$ each for good professional photos or equivalent, suitable for reproduction.
Full information on subject photographed will increase their acceptability.
The Editor, RADIO-ELECTRONICS 25 West Broadway, New York 7, N. Y.

Preferced

 for original Equipment Provel

There is an application for every Oxford Speaker . . . and an Oxford Speaker for every application.

OXFORD

ELECTRIC CORPORATION

Herschel Thomason, radio technician of Magnolia, Arkansas, and father of five-year-old Freddie Thomason, writes the HELP-FREDDIE-WALK FUND as follows:

Freddie is really looking forward to getting some arms. Almost every time we sit down to eat, he will tell us that Dr. Kessler is going to make him some

Freddie Thomason and young brother.
hands and that he will be able to feed himself. We are very anxious for next spring to come, for that is when they will start on his arms."

By this time, most of our readers are acquainted with little Freddie, the youngster who was born without arms or legs, and for whom life has meant a series of adjustments such as few of us can comprehend. Quite some time ago, he was fitted with artificial legs at the Kessler Institute for Rehabilitation, West Orange, N. J., and he is now learning to walk by himself. Each step forward is a new accomplishment requiring courage and faith, but these are qualities in which Freddie and his family have never been found lacking.

They and we have been encouraged not only by the welcome contributions to the Fund, but by the many expres- $^{\text {b }}$ sions of affection and good will that often accompany donations. Typical of such messages are the following:

Received from Patricia L. Nield, Sec'y-Treasurer of The Sunshine Circle of Sacramento, Calif., along with their donation of $\$ 10.00$: "We, The Sunshine Circle, are thankful that this case has been brought to our attention and that we are privileged to help Freddie attain health and happiness . . . We
seek to reach out and give a touch of warmth, so necessary for the well being of those in need of help. Therefore, along with our gift for Freddie, we send our most sincere and heartfelt thoughts."

And from Frank Gabinowitz, of Long Rranch, N. J., comes a donation of $\$ 2.00$ accompanied by uhis note: ". . It is good to hear that he is making progress at Kessler Institute with his legs... Every now and then I'll be only too happy to make a contribution to his progress. I believe in strong legs to work so weak legs can someday walk."

Won't you join our family of friends of Freddie? No donation is too small to receive our sincere thanks and acknowledgement, as well as the heartfelt appreciation of the Thomasons. Make all checks, money orders, etc., payable to Herschel Thomason.
Address letters to:
HELP-FREDDIE-WALK FUND c/o RADIO-ELECTRONICS Magazine

$$
25 \text { West Broadway }
$$

New York 7, N. Y.
FAMILY CIRCLE CONTRIBUTIONS

Balance as of July 17. $1953 \ldots .$. . $\$ 602.50$

FAMILY CIRCLE Contributions as
of August 18, 1953
\$ 602.5 C
RADIO-ELECTRONICS CONTRIBUTIONS
Balance as of July 17, 1953..... \$10,166.09 Anonymous, New York, N.Y. 1.00
A/IC E. J. Dupuis, Eglin A.F.B., Fla. 20.00
Frank Gabinowitz, Long Branch, N.J. 2.00
G. Leonard, Gouverneur, N.Y. 1.00

Edward J. Schnepf, Forest Hills, N.Y. $\quad 5.00$
The Sunshine Circle, Sacramento
Calif.
RADIO-ELECTRONICS Contribu*
tions as of August 18, 1953...
FAMILY CIRCLE Contributions as
of August 18, 1953
$\$ 10,205.07$

TOTAL Contributions as of August
18, 1953
\$10,807.59

Jin Sernstack Publications

HUGO GERNSBACK Founder	
Modern Electrics	1908
Wireless Association of America	1908
Radio News	1919
Science \& Invention	1920
Television Rad io-Craft	$\begin{array}{r}1927 \\ \hline 1929\end{array}$
Short-Wave Craft	1930
Television News	1931

Some of the farger libraries still have conies of $\varepsilon L \varepsilon$
TRICAL EXPERIMENTER on fle for interasted readory

OCTOBER 1919

ELECTRICAL EXPERIMENTER

"My Inventions-

The Art of Telautomatics," by Nikola Tesla.
"Submarine's Under-water Radio."
"The Wireless Ukulele."
"Unique Radiophone Helmet."
"Government Radio Control-Once More," by H. Gernsback.
"Radio Problems in Aviation," by Edward Rice Doyle.
"Efficient Radio Crystal Detector," by Robert F. Gowen, R.E.
"Can Radio Ignite Balloons?" by Nikola Tesla and others.

SENSITIVE CAPACITANCE RELAY CIRCUIT

In the most commen types of capacitance relay circuits, the relay tube is controlled by the cathode bias of the oscillator tube. In this circuit described by D. H. Sullivan in Radio Constructor (London, England), control bias is ob-

L1, L2, and L3 may be tuned to any convenient frequency as long as it is not too low and is not in the broadcast band. L1 consists of 250 turns of No. 28 wire wound on a $3 / 8$-inch form and tapped 50 turns from the ground end. L2 and L3 are each 200 turns of No. 28 wire wound side-by-side or one over thel other on a $3 / 8$-inch form.

tained from a rectifier coupled to the oscillator plate circuit.

The unit is simple to adjust. Set the sensitivity control R1 so the grid of the relay tube is grounded. Connect a highresistance voltmeter or v.t.v.m. across R1 and adjust the trimmers across L2 and L3 for maximum indication on the meter. Advance R1 slowly until the relay just opens. When any comparatively large body approaches the metal pickup plate, the added capacitance appears across L1 and causes the oscillator frequency to shift. This reduces the r.f. voltage developed across L2 and L3. The rectified bias voltage across R1 drops and causes the relay to operate.

Materials for capacitance relay
Resistors: 1-470,000, 1- 150,000 ohms, $1 / 2$ waft: 1250,000 ohms potentiometer.
Capacitors: 1-.002, 1-.01 $\mu \mathrm{f}$, $1-100 \mu \mu \mathrm{f}$ mica or ceramic. 3- 50 -tuif air or ceromic variable trimmers. Miscellaneous: Chassis, $3 / 4$-inch rod or tubing for coil forms, sockets, tubes: I-plate-circuit relay with coil resistance of $2,000 \mathrm{ohms}$ or more; hookup wire. and hardwore.

PICTURE TUBE CHECKER

TV service technicians have developed various short-cuts for quickly determining whether the more common picture-tube complaints are caused by defects in the kinescope or in the receiver circuits. A recent issue of Current Flashes (Stromberg-Carlson TV service bulletin) shows how a 6AF6-G
or similar twin-beam electron-ray tuning indicator can be used to check the voltages at the picture-tube socket. The diagram is shown in Fig, 1-a. The 6AF6-G socket is wired to a plug which fits the picture tube socket.

Fig. 1-a-6AF6-G is wired to plug.
The performance of the kinescope and associated receiver circuits can be checked by inserting the checker into the socket on the receiver. Indications are as follows: (1) A glowing heater indicates the presence of heater voltage on the C-R tube socket. (2) A bright green glow on the target indicates the presence of first anode voltage. (3) One of the shadows will have sharp areas as in the lower half of Fig 1-b. A properly functioning brightness control will cause the shadow area to vary as the control is rotated. (4) One-half of the target area will have fuzzy or blurred edges as in the upper

Get This Valuable Book ETust for Examining corns's New 6-Volume Set

Here's "Know. How" That Makes You Worth More! Coyne's great new 6-volume set gives you all the answers to servicing problems-quickly! For basic "know-how" that is easy to understand, you'll find everything you want in volumes 1 to 5 which contain over 5000 practical facts and data. They cover every step from principles to installing, servicing, trouble-shooting and aligning all types of radio and TV sets. So up-to-date it includes COLOR TV and UHF, adapters and converters. Also covers very latest information on TRANSISTORS.
And then ${ }^{802-P a q e}$ speciy onvision Cyclopedia Included (the today's Coyne TELEVISION CYCLOPEDIA. It answers today's television problems on servicing, alignment, installation and others. In easy-to-find ABC order, cross indexed. Use this 6 volume TV-RADIO LIBRARY free for 7 days; get the valuable Servicing Book ABSOLUTELY FREE!

SEND NO MONEY! Just mail coupon for 6-volume set on 7 days free trial. We'll include book of 150 TV -Radio Patterns \& Diagrams. If you keep the set, pay $\$ 2$ in 7 days and $\$ 2$ per month until $\$ 22.50$ plus postage is paid. (Cash price $\$ 20.95$). Or you can return the library at our expense in 7 days and owe nothing. YOU BE THE JUDGE. Either way, the book of TV-Radio Patterns is yours FREE to keep! Offer is limited. Act NOW!

[^9]hadIo-ELECTRONIC CIRCUITS
half of Fig. 1-b. The blurred edge indicates the presence of video or sync information, or both. A properly operating contrast control causes the shadow area to vary as it is turned.

Fig. 1-b-Upper half has blurred edges.
On the Stromberg-Carlson models 24 and 119 , the eye will overlap, but this does not prevent the contrast and brightness circuits from being checked as described above. On the model 317 series, the brightness and contrast controls affect the voltage on the cathode of the kinescope so the operation of both of these controls will be observed on the same half of the target.

PROTECTING V.T.V.M.

This circuit shows how a conventional bridge-type v.t.v.m. may be protected against overloading and possible burnouts. Resistor R1, the plate load of V1, is shunted with a small neon lamp. When the input voltage is zero, the voltage across R1 is just below the firing point of the neon lamp. Excessive input to the v.t.v.m. will cause V1 to conduct heavily and the voltage drop

across R1 exceeds the firing voltage of the lamp. The lamp fires and practically short-circuits R1 so the full supply voltage is applied to the plate of V1. Ordinarily, the needle would tend to fly off scale in the reverse direction. However, this does not happen because the most positive voltage is now applied to the cathode of the 1 N34 so that it does not pass current through the meter. The neon lamp may be mounted on the front panel of the meter to provide an immediate indication of meter overload.-D. Sachs

OSCILLOSCOPE MODIFICATION

My Eico model 425 K scope performed well, but its trace was not as sharp as I desired. The spot was oval instead of round. I incorporated a spotshape control which improved the trace. A 1-megohm potentiometer is the only component required for the modification. Pin 7 of the $5 B P 1$ is normally
grounded. I lifted it off ground and connected it to the arm of the 1-megohm potentiometer connected between the first B plus lead and ground as shown by the dashed lines in the diagram. I mounted the potentiometer on the chassis, since readjustment is not

required until the $C-R$ tube is replaced.
To adjust the control, turn the vertical and horizontal gain controls fully clockwise, Set the horizontal input switch to external and turn down the brightness to prevent burning the screen. Adjust the spot-shape control to produce a spot which is as round as possible while keeping the spot diameter at minimum with the focus con-trol.-Milton Herman

NOVEL PHONO OSCILLATOR

The phono oscillator shown in the diagram will probably provide better quality than those in which the pickup works directly into one of the grids of a pentode or a multigrid converter tube. Since one half of the tube is used as an audio amplifier and plate modulator, it will provide a greater depth of modulation with less distortion.

The oscillator uses a standard Hart-ley-type broadcast oscillator coil tuned by a $300-\mu \mu \mathrm{f}$ trimmer capacitor. The designer, writing in Radio-Gen (New Zealand), claims that the output is sufficient to cover a small home.

Power input should be the lowest value that will provide a usable signal at the receiver. Power-supply requirements are slight. Any supply delivering 90 volts or more at a few milliamperes will suffice. A suitable supply is shown below the main diagram. To vary the output, use a semivariable resistor in place of the bleeder. Connect B plus line from oscillator to the slider on the resistor and vary as desired.

OSCIL-O-PEN

Extremely conrentent test oscillator for all radio gervicing ; allynment Storn Still as a pen or Seif
 ${ }^{600}$.uegacycies Lo in cosi : Uused by signal ${ }^{\text {corbs }}$

GENERAL TEST EQUIPMENT 38 Argyle Ave. Buffalo 9, N. Y.

ENJOY 3 COLOR TELEVISION

 FILTER SCREEN NOWChanges dull ere-straining black and white pictures
into beautiful color tones. Seconds to attact No tools

Zingo Products, Johnstown 13, New York

Let me show you how EASY it is to

Hixim

I will help you to start learning TV the practical way - by assembling a TRANSVISION TV KIT in Easy STAGES. For only $\$ 39$ you pkg. for all of our kits). This pack age gives you the BASIC CHASSIS age gives you the BASIC CHASSIS
and over 450 TV COMPONENTS with complete Instructions, Drawings, Photos, Service Booklet, and a year's subscription to my "TV and Electronics Notes". When ready, you order the next stage ($\mathrm{pkg} .=2$), etc. Low prices make your complete kit a terrific buy!

Shows 6 Great TV Kits:
EXCLUSIVE: Only Transvision TV Kits are adaptable to UHF. Ideal for FRINGE AREAS. No Previous Technical Knowledge required. Write now! Transvision, INC., Dept. reio NEW ROCHELLE, N. Y.
Mr. D. Gnessin, Educatienal Director
TRANSVISION, INC., NEW ROCHEHE, N. Y. Dept. REI© \square I'm enclosing $\$$ altage $\$ 1$, with afl Instruction Masterial. Solandord kit \square Send FREE copy of your new TV Kit Catalog, Name

TRANSVISION offers the only specially designed line of Coin-Operated and Commercial TV with the FREEVIEWER* ATTACHMENT (Pat. Pend.)
This field offers rich rewards to enterprising servicemen or dealers - on part time of full time basis.
*The Electronic Freeviewer is a patented device which makes coin operation really pay off in a big way. Boosts revenue by "sampling" - by giving a short freevicu of TV programs to prospective customers. Works like magic in enticing sales.
Get details now. TRANSVISION, INC. NEW ROCHELLE, N. Y.

FTRANSVISIONAIL THIS COUPON TODAY-- REIO TRANSVISION. INC., NEW ROCHELLE, N. Y. Dept. REIO I Rush full details on COIN OPERATED TV.
1 Name
Addrous
City

TRY THIS ONE

DEMAGNETIZING GUN
The magnetic field surrounding the tip of a Weller-type gun is useful for demagnetizing wrist watches and pocket watches. A special technique is needed for best results. Turn on the gun and place the watch between the tip electrodes or as nearly so as possible. Then slowly withdraw the watch, taking three or four seconds to get it a foot or two away from the gun (which is left on). Repeat this for each axis of orientation of the watch, and if it happens to be a large one, for each side. Take care to avoid touching plastic crystals with the gun tip while it is hot.
Of course, it is better to take precautions to keep from magnetizing the watches. They should not be brought closer than two or three times the largest dimension to modern magnetic structures, even momentarily. Multimeters, photographic exposure meters, and speakers are among common offenders. Both wrist and pocket watches should be removed before handling large PM speakers, even when speakers are inside their shipping containers.-Gray C. Trembly

ANTENNA COUPLER

You may sometimes want to couple two TV sets to a single antenna for a demonstration or a comparison.

Simply take three $21 / 2$-inch lengths of 300 -ohm lead and connect them together as shown above, with a 900 -ohm, $1 / 2$-watt carbon resistor (standard 910ohm units will serve nicely) soldered across each lead at the junction. Then rivet suitable fiber washers together so that the assembly is held between them.

When a 300 -ohm TV-antenna lead is connected to any one of the legs and 300 -ohm receiver inputs are connected to the other two, each of the receivers and the antenna "look into" 300 ohms. At the same time the signal from the antenna is divided equally.-John T. Frye

EASY TO LEARN CODE

 It is easy to learn or increase speedwith an Instructograph Code Teacter. 1 Ifords the quickest and mose prace: Iral method yet dereloped. For be-
:1mers or adranced students. Arall. able tapes for beginner's alphahet
to iyplcal messakes on all gubjects. Speed range 5 to 40 WI'M. Always
ready-no QHM.

ENDORSED BY THOUSANDS: The Instructograph Code Teacher
Therally takes the place of an oier.
ator-instructor and enables anyone to
 ther assistance. Thousands of surcessful operawrs have
acquired the code with the Instructograph System Wrile today for convenlent rental and purchase plana

INSTRUGTOGRAPH GOMPANY

4701 Sheridan Rd.. Dept. RC. Chicago 40. III.

TELEVISION

Big demand for graduafes
B.S. DEGREE IN 27 MONTHS in radio including IV engineering-VHF, UHF, AM and FM. Students use over $\$ 100,000$ worth of equipment including 2 large commercial type transmitters in new TV lab. Intense specialized course includes strong basis in mathematics, science and advaneed design in tadia and TV.
Hundreds of young men each vear are earning engineering degrees in this recognized institution. Start any quarter. Many earn a major part of expenser in this industrial center. Low tuition. Competent in struction. Thorouah. intense practical program. Also B.S. DEGREE IN 27 MO. in Aeronautical Chemical. Civil. Electrical and Mechanical Engineering. G.I. Gov't approved. Enter Dec., March. June, Sept. Free catalog. ENROLL NOW.
INDIANA TECHNICAL COLLEGE 17103 E. Washington Blvd., Fort Wayne 2, Indiana

PRESIE CONDENSER TESTER

Finds Intermittent

 Condensers Instantly

See Your Dist. or Order Direct

PRES-PROBECO.
4034 N. Sixth St., Milwaukee 12, Wise.

SUBSCRIBERS

If you're moving, please don't forget to send us your address as it appears on the copy of the magazine, including the numbers shown beside your name, as well as your new address.
If we receive this information before the 20th of the month, you will continue getting the magazine without interruption. Your coóperation will be most helpful and greatly appreciated.

FINDING V.H.F.-U.H.F. BANDS

Harmonics from the oscillator of an accurately calibrated communications receiver can be a valuable aid in calibrating other receivers and converters designed for use on v.h.f. and u.h.f. bands. First, you must know the receiver's i.f. and whether its oscillator is on the low or high side of the signal frequency. With these facts, the set's oscillator can be used as an accurate signal generator. If the oscillator is above the signal, add the i.f. to the dial reading to get the oscillator frequency. Subtract the i.f. from the dial reading when the oscillator operates on the low side.
This is how a receiver using a high beat might be used to locate the $220-$ $225-\mathrm{mc}$ band which was opened to technicians: Set the receiver dial to 27.045 mc . Add the i.f. (455 kc in this case) to get the oscillator frequency (27.5 mc). The 8th harmonic (27.5×8) is 220 mc , the low end of the band. Similarly, tune the receiver to 27.67 mc to find the high end of the band at 225 mc .

Tune to frequencies between 27.05 and 27.67 mc to establish other points in the band. Although we have used the 8th harmonic in this example, other harmonics may be used to calibrate this and other v.h.f. and u.h.f. bands.

We must emphasize that the equipment to be calibrated must first be roughly calibrated with a grid-dip meter, Lecher wires, or a wavemeter to establish the approximate tuning range before attempting spot calibration with the communications receiver.

No direct connection is needed between the two receivers. Laying two short antennas side-by-side should provide sufficient coupling.-S. H. Beverage, W1MGP

FILAMENT WIRING HINT

In building sets where large filament currents are required, it is often considered necessary to parallel smaller filament transformers to get the required current. However, in such cases it is best to divide the filaments into groups and feed each group from a separate transformer. If the transformers are paralleled and their output voltages are not identical under all load conditions, circulating currents flow through the transformers and cause power wastage and possible transformer overload. You also get the advantage of isolation. Frequently undesirable coupling results from common filament supplies.-Charles Erwin Cohn

HANDY GROUND CLIPS

Someday when your wife isn't around, snitch one of her wave-set clips. They make good clamps to ground chassis during tests. I used a Goody clip which is nearly 4 inches long. It grips a large area of the chassis, thus assuring a good ground. There are holes in the clips, so all you have to do is attach a soldering lug and a length of ground wire.-B. W. Welz

No more roof-top shouting-No phonesfield strengt
equipment!
Use a KLIPZON Type C PROBE
We show you how. Maximum picture guar anteed in a jify! SAVE TIME AND MONEY Many other uses described in FREE

4-page illustrated bulletin.
Ask lor KLIPZON Type C at your local distributor;
UNITED TECHNICAL LABORATORIES
BOX 425 F MORRISTOWN, N J

The last word in UHF TVAntemas- the UW-2

A completely balanced broad band antenna covering all channels from 14 to 82 and terminating in 300 ohms with a very low valtage stand. ing wave ratio.

- MINIMUM WIND RESISTANCE
- Completely free of INSULATORS
- EXCELLENT DIRECTIVITY

CORONA RADIO KITS

Please mention

RADIO-ELECTRONICS

when answering advertisements

TRY THIS ONE

SPEAKER MATCHING CONTROL

When two 8 -ohm speakers are used with an amplifier, one in the cabinet and one at a remote point such as a rumpus room, it is often desirable to energize either one separately or both simultaneously.

For maximum output quality and volume a proper impedance match must be maintained. This is easily done by using a 4 -deck, 3-position switch such as a Centralab type 1427 . The schematic shows a hookup which can be made in

a matter of minutes. Most amplifiers have both 4 - and 8 -ohm taps. Both of these are used. Placing the switch in position 1 connects speakers 1 and 2 in parallel across the 4 -ohm tap. Position 2 connects only speaker 1 to the 8 -ohm tap and position 3 connects only speaker 2 to the 8 -ohm tap. Thus we have properly matched impedance in all three positions.

This switching circuit can be used with speaker impedances different from those mentioned. The output taps on the amplifier and the speakers used are your guide. Just keep in mind that two 8 -ohm speakers in parallel become one 4 -ohm unit, and two 16 -ohm speakers in parallel become 8 -ohms. It's the law of parallel resistances, remember?This system is of course not limited to 2 speakers. If sufficient power is available, you can hook up as many speakers as you wish. Always be sure that the total impedance of the sqeakers equals that of the transformer.John E. Howlett

MODIFIED CAPACITOR CHECKER

The capacitor checker in the February issue (bottom diagram on page 115) worked fine but I was not satisfied. It had one feature I did not like. Sometimes we want to check a capacitor for its ability to hold a charge. I could not do this with the original checker because the capacitor automatically dis-

charged when the switch was released.
After some experimenting, I came up with a satisfactory circuit. See diagram. Two s.p.s.t push-buttons are used instead of the d.p.d.t. switch in the original model.-Harold L. Wilkerson

Send for Your
 ERE MDWESTPA For 1954 a Completely NEW LINE of Copy of the NEW 1954 21"-27"TELEVSSON TELEVISION and RADIO Catalog

TABLE MODELS

and COMPLETE CHASSIS

d
LOW FACTORY PRICES

YOUR CHOICE OF EITHER 12 CHANNEL VHF or All-Chonnel VHF-UHF Models
Buy your Television or Radio Direct from the Midwest Factory . . . on 30 DAYS TRLAL . . . Easy Terms . . . and at LOW FACTORX PliICES. For 34 years Midwest, the world's largest and oldest exclusive Factory-To- You radio abd television manufacturer, has served hundreds of thousands of satisfied customers all over the world.

EASY TERMS 30 DAYS TRIAL

All models available in your choice of nahogany, walnut finish or blond timed oak.

- WRITE IN NAME AND ADDRESS (PLEASE
PRINT) ON COUPON OR Re POSTCARD
PRINT) ON GOUPON OR le POSTCARD
-

MIDWEST rADIO \& TELEVISION CORP. Dept B-38 909 BROAD'VAY - CINCINNATI 2, OHIO Please send me your new FREE 1954 Catalog.
name \qquad
ADDRESS

:
 Please
$-$

Also-Powerful New 1954 Worldrianging
MIDWEST Series 16 RADIOS In Beautiful Consoles and Complete Chassis

MIDWEST RADIO \& TELEVISION CORP.
 requisites. Incorporating General Industries' novel vertical idler shifting principle, the Model SS provides smooth, dependable performance at all three operating speeds. Moving shift lever to "OFF" position automatically disengages idler wheel from motor shaft during non-operating periods.
Specifications and quantity price quotations on the Model SS, or its companion, the Model DSS, with 4-pole motor for high-fidelity reproduction, will be furnished promptly upon request.

${ }_{803.195^{3}}^{5 N I V E_{0}}$
 THE GENERAL INDUSTRIES CO. DEPARTMENT ME - ELYRIA, OHIO

DISTRIBUTORS - Wrise or wire now to
BEST ELECTRONICS CORPORATION
2254 Colby Avenue, Lot Angeles 64, California

QUESTION BOX

BATTERY CHARGER-ELIMINATOR

? Please prepare a diagram of an a.c. operated power supply for charging storage batteries and operating dymamotors requiring 6 to 28 volts rl.c. at a maximum of 10 amp.-O. H. М., Brentwood, N. Y.
A. Here is the circuit of a power supply which will do the job for you. Transformers for high-current, lowvoltage d.c. supplies are usually special items which are not generally available to the consumer. Of course, a suitable transformer can be obtained on special order but its cost alone is likely to be greater than that of a complete commercial supply having the same ratings The transformer should have a large number of taps on the primary and secondary windings to permit adjusting the voltage input to the rectifier to the required value for various d.c. loads and voltages.

To avoid specifying a transformer which would have to be wound to order, we have designed the supply around 10 -amp filament transformers having tapped primaries and secondaries. The secondaries are connected in series aiding. The sum of the secondary voltages should not exceed the maximum input to the rectifier. You ca: use any number of 10 -amp transformers as long as you get the required a.c. voltage out of them. Since some U'TC series CG filament transformers have dual multivoltage secondaries and multivoltage primaries, the large number of taps available makes them ideal for obtaining the desired a.c. output. Type CG-124 and CG-126 transformers or close equivalents are recommended for CT and T1 respectively. The positions of $S 1$ and $S 2$ can be changed independently.

You have a choice of copper oxide, magnesium-cupric sulphide, or selenium rectifiers. The maximum a.c. input voltage for each type depends on the make and type. Manufacturers data gives the maximum a.c. input to each type when working into inductive, resistive, and capacitive loads. The a.c. voltage rises when the rectifier is not

'"DIRECT FACTORY SPEAKER REPAIRS SINCE 1927"' Min. Order $\$ 3.00 .20 \%$ deposit req. on all C.O.D.'s Please add sufficient postage

RADIO CORP

working into a load, so take care that the no-load a.c. input voltage does not exceed the maximum rating.

The output is not filtered. If a filter is required, try connecting several 500 $\mu \mathrm{f}, 50$-volt electrolytics in parallel across the d.c. supply between the rectifier and the ammeter. Connecting old storage batteries in series across the output of the supply is an excellent way of obtaining smooth filtering and good regulation. Of course, with variable voltage output, you will have to change the battery connections so that their total terminal voltage ratings equal the output of the supply.

Readers desiring supplies of this type with different voltage ratings can use this circuit as the basis for their design. The current ratings of the transformers and rectifier should equal or be greater than the maximum current which will be drawn by the load. The maximum a.c. voltage required depends on the type and make of rectifier. Power rectifiers and data on them is rather difficult to obtain in many locations. You can obtain catalogs and information on sources of supply from: Sarkes Tarzian Inc., Rectifier Division, Bloomington, Ind.; Radio Receptor Co., Inc., 251 W. 19th St., New York, N. Y.; P. R. Mallory \& Co., Indianapolis, Ind; and others.

Select a rectifier which will deliver somewhat more than the maximum voltage that you require. Note the a.c. input which it needs for the specified d.c. output, then select your transformer or transformers accordingly. Remember that the transformer should have as many taps as possible so that the rectifier input can be adjusted to meet actual operating conditions.

CODE OSCILLATOR

? Several years ago I constructed a code oscillator from a diagram which appeared in Radio-Craft. The oscillator and its diagram were given away when I entered the service. I would like to duplicate this oscillator for a group of Boy Scouts. The unit used a 117-volt rectifier-amplifier tube and was designed to feed a speaker and several pairs of phones connected in parallel. Please reprint the original diagrain or one sinilar.-A. E. T', St. Louis, Mo.
A. We believe that this is the diagram that you used. T1 is a push-pull output transformer. A 1-megohm variable grid

Learn on REAL EQUIPMENTI
in Best Equipped School of its

kind in $\mathbf{U} . \mathbf{S}$.

Prepare for your future NOW' Come to the Great Shops of Coyne. Get practical training in opportunity fields-TELEYISION-RADIO-ELEC-TRICITY-FLECTRONICS. Preparefor a better job in Industry or better service rating if drafted.

WE TRAIN YOU IN CHICAGO
At Coyne you learn on real. full-size qquipment. Trained instructors show you how, then you do shop jobs yourself. No previous experience or advanced education needed

Approved for Veterans

Finamce Plan-Enroll now, pay most of tuition later. If you need part-time work to help out with living expenses while at Coyne, we'll help you get it. Spocial tuition plan for men of draft age
FREE BOOK Clip coupon for Big Free Illustrated

Send FREE BOOK and full details on
\square TELEVISION-RADIO \square ELECTRICITY
I name
| ADDRESS
1 CITY.

ASK YOUR CLAROSTAT DISTRIBUTOR
 for these new Pick-A-Shaft wire-wound controls. Ask for new catalog-or write us.

Controls and Resistors

Clarostat mfg. CO., INC., dover, NEW HAMPSHIRE

With uniform 360° coverage, non-resonant construction, and 100% storm-proofing, ATLAS Radial Driver Unit Projectors offen solve the most difficult sound problems-are excellent for reproduction of speech, chimes and music. For complete details on Radials and the famous ATLAS line of Public Address and Microphone Stand Equipment...
WRITE NOW for FREE Catalog 553

1443 39th St., Brooklyn 18, N. Y.
resistor varies the pitch and a 50,000 ohm control varies the headphone volume. The half-wave power transformer T2 isolates the unit from the power line and minimizes the shock hazard. The transformer may be a Stancor type PS8415 or equivalent. Note particularly that the tube heater is connected across the a.c. line rather than across the secondary of T2.

OSCILLATOR SWITCHING

? I am constructing a small signal generator which provides four spot frequencies for checting superhet alignment. The circuit (see Fig. 1) requires

a special slide switch which I cannot obtain. Please modify the circuit so that I can use a switch which is readily available.-J. W. S., Hartford, Conn
A. The diagram in Fig. 2 shows how the circuit can be wired with a standard

double-pole (two-circuit) rotary switch having four or more positions.

EXTENSION LOUDSPEAKER

? I plan to add an extension speatier and separate volume control to my audio system. Please show how the switch and volume control may be added without disturbing the impedance of the output circuit.-H.W. K., Hagerstown, Md.
A. The diagram shows the circuit you requested. The L-pad and remote speak-

er should have the same impedance as the secondary impedance of the output transformer.

CONICAL ON U.H.F.
? Is it true that conical antennas designed for the regular v.h.f. channels can also be used on u.h.f.? The particular one 1 have in mind has an " X "

AUC
RADIO ETELEISION CORP. Authorized Distributors of Electronic Equipment and Components, on the Opening of Their New Salesrooms in NEWARK, N.J. af 35 WILLIAM STREET

Everybody in Electronics welcomes the great new HUDSON Sales. rooms just opened in the heart of the mighty New Jersey marketto provide the same huge stocks, Electronic Supply Centers of the East!
Radio and TV Dealers and Servicemen, Industrial Users of Electronic Equipment and Components, Radio Amateurs, High-Fidelity Enthusiasts ... all have come to learn that 'HUDSON has EVERYTHING IN ELECTRONICS-at the LOWEST Published Price of Them All!" Visit our Newark Store, you Jersey Area Palpful People Huge Stocks and Facilities, meet our Friendly, Helpful Peopleyou'll enjoy the experience!

These Nationally Famous Manufacturers of Standard Brand Top Quality Electronic Products and High Fidelity Components, whose Complete Lines are found in ALL THREE Great HUDSON Salesrooms, join in congratulating us on the Opening of the Newark Store:

Acro Products
Advance Elec. \& Relay Co. Aerovox Corp. Altec-lansing Corp.
American Elec. Heater Co Amperex Electronic Corp. Arrow-Mart Hegeman Elec. Arco Electronics Arco Elections, Inc Barker B Williamson, Inc. Bell Sound Systems, Inc. Berlant Associates Bliley Electric Co. David Bogen Co., Inc. British Industries Corp Brook Electronics, Inc Brush Oevelopment Co Burgess Battery Co. Cambridge Co
Cannon Electric Co.
Cannon Electric
Centralab
Centralab
Cinch-Jones Sand. Transformer Clarkstan Corp.

Clarostat Mfg. Co., Inc. Consolidated Wire Continental Carban, Inc. Dow-Key, Inc.
Drake Electric Works Allen B. Dumont Labs, Inc Electronics Instrument Corp. Electro-Voice, Inc. Multi Praducts, Inc Erie Resistor Corp. Espey Mig. Co. Eveready Batteries Freed Transformer Co., Inc General Electric Co. General Industries Co Gonset Co. Gordon Specialties Co. Gray Research \& Develop. Guardian Electric Mig. Co. Hallicrafters Co. Hammarverwill Electronic Hickok Electrical Inst Hickok Electrical Inst. Co. Insuline Corp of America

Jackson Industries, Inc. Jersey Tech Labs
ennings Radio Mfg Co Quam-Nichols Co. ennings Radio Mig. Co. ensen industries, inc. ensen Mrg. Co. Mathias Klein \& Sons Kraeuter \& Co. a Pointe Electronics, Inc. Littelfuse, Inc. Livingsten Electronic Corp P. R. Mallory \& Co., Inc. Mark Simpson Mfg. Co. Meissnẹ Mig. Morrow Radio Mfg. Co. Mosley Electronics Mueller Electric Co National Co. Ohmite Mfg. Co. Par Metal Products Corp. Pentron Corp. Perma-Power Co. Pilot Radio Corp. Precision Apparatus Co. o. Premier Metal Products

Quam-Nichols Co. Radio Corp. of America Radio Craftsmen, Inc. Raytheon Mig. Co.
Sangamo Electric Co.
Shure Bros., Inc. Simpson Electric Co. Herman H. Smith, Inc. Snap-On Drawer Co. Sonar Radio Corp. Sprague Products Co Stephens Mfg Corp. Stephens Mig. Corp.
Sylvania Electric Products Tech-Master Products Co. Triplett Elec. Instrument Turner Co.
Ungar Electric Tools, Inc United Transformer Corp. University Loudspeakers, Inc.
Vector Electronic Co.
Walter L. Schott Co. Webster-Chicago Corp. Weston Elec. Instrument Co.
write for complete, new 1954 Giant Hudson Catalog!

Dept. r. 10

NEWARK, N. J.
35 William Street Phone MArket 4.5151

PAY LESS FOR TUBES*
individually boxed - fully tested - each tube guaran. teed for six months

QUESTION BOX

The Taco 4-stacked Bow-Tie
Cat. No. 3006 gives more capture area for a sironger, clearer signal in the weakest fringe areas. This UHF array has been proved as the finest for performanc and dependability in all UHF areas.

Also available:

Model 3031 Single Bow Tie with screen grid refector $\$ 4.00$ List Model 3032 Dual Bow Tie with screen grid refector $\$ 7.95$ List Ask your Tace distributor for complete details.

Concorrl Radiop presents the world's most powerful UHF-VHF-FM antenna!

TO RECEIVE ACl UHF and All Vhf stations in all DIRECTIONS FOR 60 MILES WITHOUT A ROTORMOTOR OF ANY KIND!!

While antenna reception is guaranteed for 60 miles, perfect pictures have been consistently received as for as 160 miles from stations.

TRANSMISSION LINE
Improves Both UNF and VHF Perform. ance of any All-CHANNEL Antennal 100 Ft. 150 Ft.
200 Ft.
$\$ 8.90$
$\$ 13.90$ $\$ 17.50$

Minimum quantity 100 ft .
Mfg. solely by
All CHANNEL ANTENNA CORP. New York N. Y. under license Pat. No's 2,585,670. $2,609,503$. 2,625,655. others pending.

CONCORD RADIO 54 Vesey Street, New York 7, N. y.

 Please send me............................amount at $\$ 22.05$ dealer net. Dealers order on letterhead.Please send me:.............................eet of 4 conductor Polymitalene Name, (ity
\square Check Enclosed

BARGAIN OF THE YEAR DUE TO MADE．
BUY EARLY－ Stocks Limited

 pletures in the medium fringe and stacked arrays at 70 miles or hetter．Look at these prices：

	SINGLE BAY	$\begin{aligned} & \text { AlRAY } \\ & \text { AlRAYS } \end{aligned}$	singlem Bay LOTS OF 6
MODEL	NET EACH	EAC：H	E．aCH
XY－11－13	\＄3．50	\＄7．50	\＄2．95
XY－9－11	3.50	7.50	2.95
XY－7－9	3.50	7.50	2.95
XY－45\％	6.25	11.95	4.95
XY－315	6.25	11.95	4.95
XY－234	6.25	11.95	4.95
numbers	indicate cha	s cover	－be sure to

Deslgned for finest reception in ultra－fringe weak signal Chas．TWIN DRIVEN for Channels 2－6，Unt－Driven for Channels $7-13$ ．Single array moduces 11 db gain．Finest
construction．Fach array includes 10 airplane－type alumi－ num elements，mast boom，mast clamp and supporting brackets．P＇re－assembled for easy installation．
 （Give exact channel required）

Save With Rocket 35 Foot Mast Kits

 of $6 / 20$ galvantzel steel gus wire，and everyihing else needed including，guy rings，insulators，cable clamps， 35 foot Mast Kit $\$ 15.9525$ foot Mast Kit $\$ 11.95$

Sensałional

Powermaster ALL DIRECTIONAL

TV ANTENNA ELECTRONICALLY $\$ / \mathbf{1 . 5 0}$
ROTATES IN ALL
DIRECTIONS
Espectaty designed fo
areas where signals
severa areas where signals arrive from
several directions．Offers extra high
gain over any hron gain over any hroal－hand antema． lequires
nower． 360° rotation－by electric
no 48 elements．with 6 matcled tie
rods． rods．Complete with 6－nosition
Ream Swich． $100^{\text {th }}$ Tubular Low－ OLoss Tri－X．Universial Alast Clamps． 150＇lead－in，order AX－518－15． Model AX－524 same Directronic
operation as llolel AX－518．Pro Fides 2－bays， 41 elemenis．Complete with 6－nosition
switch， 75^{\prime} tuhular cable， 3 matehed stacking hars．$\$ 23.50$

BARGAIN in All－Channel CONICALS

Hi－gain $2-$ Thy 16－element
adapiers and 3 yair The Rods Sanie，less Tie Rods

SENSATIONAL LOW PRICES ON ACCESSORIES $\begin{array}{ll}\text { Mast steel（I）ualcoated ó erimped）} 13 / 4 " & \text { O．D．．．．} \$ 1.05 \\ \text { Mast Sieel（Dualcoated }\end{array}$ Mast Connectors for $11 /{ }^{\prime \prime}$ 3ast
Chimney Mount complete with straps
Peak Roof Saddle（will take up to $11 / \mathbf{N}^{\prime \prime}$ Masi）．
Steel Guy Wire 6／20－100 coll
Rocket Twin－lead－-28 stranded
UHF Tubular Twin－lead Lo－Ioss 100 coil
Mast standooff Insulators－ $3^{\prime \prime}$ ．．．．．

sutco Combination UIIF Converter and VHF Booster Kegency VilF TV Booster
With flenty of
With ilenty of gain；designed for new and old
front ends
Ahtance ATR Anterna Botator
Efticient and dependable－ecconomicaliy priced． 20.53

NEW FALL AND WINTER CATALOG AVAILABLE

＊CATHODE RAY TUBE SPECIALS＊

${ }_{718}{ }^{\text {a }}$	17.10		
－108paA	19．25	边	＊
＋	边27.10 218 10	¢	
－${ }^{12 L P 4}$	年这．70	${ }_{1}^{16 \mathrm{GP}}$	6
$\pm{ }^{1649}$	年3．950		19．60
1608 $+\quad 16 \mathrm{G}$	（ex $\begin{aligned} & 28.20 \\ & 31.25 \\ & 3\end{aligned}$	$\underset{\substack{16 \mathrm{KP} \\ 16}}{ }$	
	退 31.28 .20	－${ }_{16}^{16 \mathrm{KPr}}$	20．60 $\substack{18.60}$
（ ${ }^{17884}$			
20cpa	边 32.50	${ }_{19} 19$ P4P4	
－			${ }_{22}^{29.50}$

ANTENNAE SrECIALS

WIRE RECORDERS IN STOCK
PENTRON－Model ST3C－2－speed Tape He

 We also cary MASCO－BOGEN－P
fiors－Pre－Amps，
FM

630 Vert．output upight
630 vert．Output potted
${ }^{630}$ Vert．Blockiny ${ }^{\text {Cose }}$
SASCODE YUNERS
DUMONT 21 UNERS
AUTHORIZED OISTRBuTORS fo
for：
General Elecetric
De Wald，Regaic Automatic and General Motors．
\star
automatic custom－built radios for piymouth
Ford chevrolet and many others．always in stock

 Yerms： 20% with order－balance coo．All prices
FOB．NEW YORK warenouse．Minimum order $\$ 5.00$ ． \star Write for our latest price list and Hi－Fi Cataiog to Dept．RE－10．

Q－1 B

ELECTRONICS CO． c．o．s．thintar slog．
1697 BROADWAY－NEW YORK 19．N．Y．
RECORDING TAPE（PLASTIC BASE） 40\％OFF
WASHINGTON，D．C．：When．Elsewoulo there
－ 1200 位
danous top tividualty boxed．Choice of nationatly
 （LIST PRICE ON ABOVE TAPES ARE 5.50 EA．）
－ 10% additional discount th Club Members of： $3488-22$ St．，San Francisco，Callf．
（Fred Goetz，Secretary）
Voicespondence Club
1614 N ．Mango Ave．．Chicago，Ititnots

－We carry new recorders，recording blanks，tape tape
recorders，etc．at large savings．PLEASE INCLUDE
SUFFICIENT POSTAGE
COMMISSIONED ELECTRONICS CO．
\＄3．00 FOR CARTOON IDEAS
RADIO．ELECTRONICS prints several radio
cartoons every month．Readers are invited to
contrihute humorous radio ideas which can be used in cartoon form．It is not necessary that you dran a skeich，unless you wish．

Address
RADIO－CARTOONS，RADIO－ELECTRONICS 25 West Broadway，New York 7，N．Y．

The only $81 / 2^{\prime \prime}$ Oscilloscope on the commercial market today. We have this Precise "scope" for you
NEW 7" Oscilloscope Kit \$ 94.95
LATEST 81/2" Oscilloscope Kit...... \$129.50 other precise kit: available
MOOEL 909K-VACUUM TU日E VOLTM TER
MOoEl 630Ka-RF-af iV \& Marker cenerator
mODEL 610KA-RF SIGNaL GENERAJOR
 blightly higher in the West. Prices and sperit California Prices thange without notice. Include 20% deposit for C C O. 0.3 . WRIIE
COAST ELECTRONICS SUPPLY CO. Dept. P2
Colif. \qquad
W. Mo \square deposit. Bolance $C O D$
Enclosed find \qquad in full.
NAME
ADOR
ZONE SIATE

Les Wildberg, president of Leader Electronics, Inc., Cleveland, announced that his firm, which has been producing special industrial switches, would enter into the manufacture and sale of TV equipment for consumer use. Mr. Wildberg has been in the electronics field for over 30 years. He was the founder and former president
 of Radiart Corp. Other executives in the Leader organization include George J. Feiss, Jr., vice-president in charge of sales, and Ralph Blauvelt, chief engineer.

L. Wildberg

Vinton K. Ulrich joined David Bogen Co., New York City, as general sales manager replacing W. Walter Jablon, who resigned as vice-president in charge of sales. Ulrich was formerly renewal sales manager of Na tional Union Radio. Mortimer Sumberg

V. K. Ulrich of the Bogen job-
been upped to the position of distributor sales manager.

Edward P. Atcherley was appointed merchandising manager for renewal

E. P. Atcherley tube sales of Sylvania Electric Products, New York City. He was formerly regional sales manager for renewal sales in the Midwest district. Sylvania also announced the appointment of W. T. Buschmann to the new position of product sales manager of radio receiving tubes. He was formerly production requirements and service coordinator for the Radio Tube and TV picture Tube Divisions.

Douglas Carpenter and Jim Hall were appointed chief antenna development engineer and associate antenna test

D. Carpenter

J. Hall
engineer, respectively, for JFD Manufacturing Co., Brooklyn, N. Y. Carpenter was at one time with La Pointe Electronics and Hall with the Civil Aeronautics Administration.

Karl W. Jensen, vice-president of Jensen Industries, Inc., Chicago, was elected chairman of the Electronic Partsu\& Equipment Manufacturers Association. Theodore Rossman, general 'manager of Pentron Corp., Chicago, was elected vice-chairman, and Helen

EDLIE
 "Save with confidence"

 $s a y s$

LOWEST PRICED SIGNAL GENERATOR, BROADCAST BAND New simplified circuit wrovides the follinw.
ing switch tuned. tone modulated frequencies:

1. $455 \mathrm{~K} . \mathrm{C}$ - 1 Itermedinte $1 . \mathrm{F}_{\text {. frequency }}$ 2. 1500 K.C.-High frequency of Broadcast
2. $600 \mathrm{~K} . \mathrm{C}$.-Lew frequency of Broadeast

Band
4. Audio tone-for audio amplifier trouble
shooting
5. An atienuator control is included for adHoused in small black hakelite caltinet size
 alignment
Band radio
of ateivers. INTRODUCTORY OFFER Deduct $\$ 1.00$ if ordered with Kit \#t or \#2

5 TUBE AC-DC SUPERHET KIT Kit \#I-Five Tube superheterodyne kit, A.C.-D.C. contains all components re-A.C.-D.C. Contains all quired to construct this latest design, highly sensitive superheterodyne broadcost receiver, complete with black bakelite cobinet (excludes
bire and solder)
wnly $\mathbf{8 5}$ Kit of 5 tubes (I2AT6, I2BA6. I2BE6. 35W4 50C5). Only $\$ 3.25$.

The Lowest Priced Kits on the Market

6-TUBE RADIO KIT

Kit \#2-A low.priced 6 TUBE KIT de-

 signed for high sensitivity. excellent selectivity and good tone quality. Uses 25L6, 25Z6, 6SQ7, 6SA7, 6SK7. 6SK7 in an easily constructed circuit. The 6 Tube kit is shipped with all parts. including punched chossis, resistors, condensers, coils, sockets, PM Speaker, hardware, etcAnd at a closeout price of
only (less tubes and cobinet) $\mathbf{\$ 6 . 9 5}$ only (less tubes and cobinet) Matched set of six tubes for kit
$\$ 3.25$

PHONO OSCILLATOR

Not a Kit!
Wireless phono oscillator transmits recording for crystal pickups or voice from carbon mike through radio without wires. Can also be used as an intercomm by using P.M. speaker
as mike. Price (excluding as mike. Price (excluding
tubes) $\mathbf{\$ 2 . 9 5}$
With Complete Set of Tubes
. $\$ 3.95$

3-TUBE PHONO AMPLIFIER

Not a Kit!
An assembled unit ready for installation using tone and volume control and six feet of rubber \$2.95 cord (Not including Tubes) With Comolete Set of Tubes

Electronic Code Practice Oscillator \& Blinker Kif $A C / D C$ or Battery Operated! Kit \#3-One of the most practical Code Practice Oscillators ever designed, yet one of the simplest to build and operate. Can be used with any number of head. phones. Adiustable Pitch Control-Any type of headphone can be used. No warmup timeready to operate instantly.
Simple and safe to operate.
Operates anywherewith AC or DC power or from a 90 volt Miniature Battery.
Learn Blinker Code with flashing light. Blinker can be used as signaling device. International Morse Code included.

Terms: All merchondise shipped F.O.B New York City, prices are subiect to change witho:1t notice. Include 20\% deposit for C.O.D.'s. WRITE FOR NEW CATAEOG-5-ed!

EDLIE Electronics

PLEASE MENTION RADIO-ELECTRONICS
when answering advertisements

R. W. Jensen

Staniland Quam, distributor sales manager of QuamNichols Co., Chicago, was re-elected treasurer of the association for her 16 th annual term. Kenneth C. Prince was re-named executive secretary.
Edwin A. Freed was named manager of operations of the General Instrument Corp. headquarters plant in Elizabeth, N. J. He was formerly sales manager. Robert L. Klabin, controller of General Instrument, was elected to manage the company's Sickles Division plant at Danielson, Conn. C. F. Sullivan, assistant controller, was named acting controller
 during Klabin's absence. General Instrument also announced the election of Malcolm C. Hutchison as a director: of the company. Hutchison is a former vice-president of Irving Trust Co.

Jacob H. Ruiter, Jr, was appointed to the newly created post of public relations manager for the Allen B. Du Mont Laboratories, Clifton, N. J. He was formerly technical advertising manager.

Obituary

Fred R. Ellinger, president of Waldom Electronics, Chicago, and Ellinger Sales Corp., Chicago representative firm, died recently in Chicago after a short illness.

Personnel Notes

. . .Jerome J. Kahn, founder and president of Standard Transformer Corp. until its recent merger with Chicago Transformer Corp., withdrew from active management in the newly formed Chicago Standard Transformer Corp. ... Robert C. Sprague, chairman of the Boald of Sprague Electric Co., North Adams, Mass., was elected a director of the Massachusetts Business Development Corp., a state agency created to attract industry to Massachusetts.
. . Harry C. Hagerty, financial vicepresident and director of the Metropolitan Life Insurance Co., was elected a director of the Radio Corporation of America.
. . Carl E. Snith resigned as vicepresident in charge of engineering of United Broadcasting Co., Cleveland, to devote full time to expanding his consulting engineering operation, that of Carl E. Smith Consulting Radio Engineers, Cleveland. He also continues as president of Cleveland Institute of Radio Electronics.
... George A. Hinckley was appointed sales engineer in the Equipment Sales Division of Raytheon Manufacturing Co., Waltham, Mass. He was formerly chief engineer of station WLAW

ON THE LATEST AND GREATEST GHIRARDI TV-RADIO SERVICE TRAINING BOOKS
. . only $\$ 12$ for the 2 -book set
10-day FREE examination . . . 4 months to pay

Radio-TV CIRCUITRY
AND OPERATION

by Ghirardi and

Johnson

688 | pages, 417 elear |
| :---: |
| illustrations |
| Price $\$ 6.50$ |
| separately |

TROUBLESHOOTING
AND REPAIR

Complete training for FASTER, BETTER SERVICE on any TV or radio ever made!

Ideal for beginners . . . a gold mine of time, saving methods for experienced service men

LEARN CIRCUITS FULLY watch service "headaches" disappear!

It's a whale of a lot easier to repair ANY television or radio receiver when you know all
about its circuits and how and why they work. about its circuits and how and why they work.
You lricate trouhles faster. You work more effiYou lrocate trouhles faster. You work more effi-
ciently. What's more, the basic training you ciently. What's more, the basic training you
get from Ghirardi's TV \& Radin Receiver get from Ghirardi's TV \& Radio Receiver
CIRCUITRY AND OPERATION book is just CIRCUITRY AND OPERATION book is just
the thing to lit you for dozens of other telethe thing to lit vou for do
vision-radio-electronic johs.
Actually. it's simpler than you may think. There ate only a few hasic circuits used in mod-
ern equipment-hut each of these has niany variations. You learn to know and recognize them instantly. You learn to locate troubles in far less time and with less testing.

MAKES THE TOUGH JOBS EASY!
Mere's what this great hook on modern circuits nvers: -Ampliturle Moilulation; 2 - Frequerry Modulation: 5-AM Detectors and AVC systems; A- Push-button Tuning and AFC Systems: f-AF Amplifiers: 8-Loudspeakrss: 9 Radio Jower supnlies: 10 Telerislon Tre-
celvers: 11 Phone Pitkups and Hecord Players: $12-$ Automattr Rerord Changers; 13-Mechanical Construe-
tion of Kecelvers : elc.

You can't go wrong! book! For years, Ghirard books hove been more wide. ly used in schools, for mili. tary training and home study than any others of their kind becouse they make things so amazingly easy to understand. The two new books described obove are this fomous author's very latest-up-to-the-minute in every respect!
> the data vou want in a
iffy. 417 elear illustratinns help make circuits easy to learn.
> See for sourself how
much this great liook ran helfy yM, in dozens of
ways? 'sp counon for 10 Ways: l'se counon for in
day FlBE:E examination.

THE HOW-TO-DO-IT GUIDE to modern service methods

Foo beginners, Ghirardi's NEW 820-page
Radio \& TV TROURLESHOOTING ANDRERadio \& TV TROUILLESHOOTING AND REPAlR hook makes all parts of the work amazingly easy to understand. For experienced servicemen it is the ideal way to "brush up" on specific types of work; to find fast answers to specific problems; or to develop better, faster and more profitable troubleshooting methods.
Modern test methods are fully explained. From quick, visual analyses of common troubles, you proceed to learn all about "static"" tests and "dynamic signal tracing and signal injection techniques. Special problems in hard-to-fix sets are
greatly siniplified. Stel-by-step charts creatly simplified. Steb-by-step charts explain professional service procedures almost at a glance.

LEARN MORE-EARN MOREI

Throughout, Ghirardi's TROUBLESHOOTING AND REPAIR is a book that paves youl way to hetter-paying service jobs! Receiver alignment is made easier than yon might have
thought possible. Tuning problems, speaker troubles. components and dozens of other subjects are covered fully.
Fivers step of television repair work is simplified to tho utmost degree! You learn to analyze fied to tho utmost degree! You learn to analyze bles faster even fading and tracing down "intermittents". Handy summaries with every chanter make the book invaluable for quick reference whenever you are "stumped" by a job. See for vourself! Use coupon today for 10 -day F IREE examination of this newest Ghirardi book!

10-DAY EXAMINATION OFFER

[^10]

Here's your big opportunity to save as never before on parts you need now. Look at the savings.

NATIONAL TURRET
TV BOOSTER
Brond New Factory Boxed
ARMY-NAVY HEADSETS Individually Boxed Very sensitive Meets both Army Model TV8. 20
$\$ 995$

Carolyn Chorlton joined Aerovox Corp., New Bedford, Mass., as a physical chemist in the Research Department. She is a graduate of Seton Hall University and of Smith Coliege.

Harry Goostein, senior engineer with Clarostat Manufacturing Co., Dover, N. H., was promoted to manager of the Precision Control Division.

Roy E. Nelson was promoted to the newly created post of manager of semiconductor equipment sales for the RCA Tube Department, Harrison, N. J. He was formerly with the Department's Government Equipment Sales as a sales engineer handling the development and sales of new products.
. . Martin W. Krenske joined Edwin I. Guthman Co., Chicago, as assistant sales manager. He was formerly with Standard Transformer Corp.

Ross H. Reynolds was appointed sales manager for commerical products, Government equipment, marketing in the General Electric Commercial and Government Equipment Department. He was formerly a project manager in the Army Equipment Section of Government Marketing.

Joseph J. Peterson, formerly with Lee Electric \& Manufacturing Co., was named to head the West Coast office of the RETMA Engineering Department. Jean A. Caffiaux, ex-Sylvania, was named assistant to Ralph R. Batcher, RETMA chief engineer, with headquarters in New York City.

John B. Swan, Jr., Philco Corp., and William L. Fogelson, P. R. Mallory \& Co., were reappointed chairman and vice-chairman, respectively, of the RETMA Traffic Committee. Leslie F. Muter, Muter Co., was reappointed chairman of the Annual Awards Committee.

Robert C. Cheek was promoted to the newly created post of assistant manager of engineering for the Westinghouse Electric Corp. Electronics Division. He was formerly assistant division sales manager.
... Thomas M. Fitzgerald, Jr., joined P. R. Mallory \& Co., Inc., as sales manager of the Capacitor Division. He had previously been with StewartWarner.
... G. W. Moler was appointed general sales manager of Potter \& Brumfield, Princeton, Ind.

Rufus P. Turner, independent consulting engineer and radio writer, was awarded the honorary degree of Doctor of Science by the College of Engineering of the Golden State University, Hollywood, California. Dr. Turner, who is well known to readers of this magazine for his many articles, was given the degree in recognition of his contributions to radio literature, simplification of test instruments, and popularizing of semiconductor devices.
. . . Frank W. Mansfield, Sylvania Electric Products, was reappointed chairman of the Industry Statistics Committee of RETMA, and Leslie E. Woods, Raytheon Manufacturing Co., was reappointed chairman of the Association's Industrial Relations Committee. END

HORIZONTAL HARMONICS

Dear Editor:
I have just read, with interest, the letter under the heading "Community TV Troubles" in the May, 1953, issue. This letter brings to rind another radiation problem caused hy TV re-ceivers-radiation of harmonies of the horizontal oscillator. This radiation is at its worst in the δ-meter amateur band and is detectable and often objectionable throughout the high-frequency communications bands.
Ahout six months ago a neighbor of mine bought a 1953 -model 21 -inch TV receiver huilt hy a prominent manufacturer. Harmonic radiation from the receiver's horizontal oscillator almost completely blocked the 80 -meter band. A phone signal had to be from 30 to 40 db above S 9 to he intelligible.
Why is it that hams are required to keep spurious radiations within the limits of good engincering practice and yet television manufacturers are allowed to produce equipment which radiates high-order harmonics with such terrific field strength?
J. N. Phillips, W4SUF Anniston, Alabama

REMOTE TOOTHACHE

Dear Editor:

Your editorial, "Radar Hazards," in the August issue of Radio-Electronics, was of particular interest to me. It cleared up a mystery which has plagued me since 1943.

While studying 10 -centimeter airborne radar gear as part of my training in the R.C.A.F., I noticed that soon after the sets were switched on, I would get a toothache. When the sets were turned off, the toothache would stop. None of the other boys in our group were similarly affected, but then none of them had such a large silver filling as I had. It was inevitable that someone would remark that I had a "resonant cavity." By reading your article, it became evident to me that the heat effect was the cause of my discomfort. In closing, let me say that I'm out to anyone who phones or calls me on the day the postman brings my cony of Radio-Electronics.

Jack V. Milton
Toronto, Ont.

COMMUNITY ANTENNA SYSTEMS

Dear Editor:
I wish to take exception to the conclusions drawn by Mr. E. D. Lucas in his articles on Community Antenna Systems. Unfortunately, his conclusions, as drawn from his own information, do not take into consideration the established facts.

Mr. Lucas, on page 40 of your August issue, recommends the use of broadband amplifier systems over individual channel-strip amplifier systems despite the fact that to date there are no commercially successful multi-channel broad-band amplifier systems in operation anywhere that compare favorably with individual strip amplifier systems.

Write for new catalog of the complete ARKAY line of radio, TV and test equipment kits!

ARKAY $=$

G \& H WOOD PRODUCTS COMPANY - 75 NORTH 11th STREET - BROOKLYN 11, N. Y. Pioneers in radio furniture for high fidelity equipment.

[^11]THE EDITOR, RADIO-ELECTRONICS
25 West Broadway, New York 7, N. Y.

Prescribed by top mfrs.*

- For operating and testing Efr DC equipment from AC lines

DC POWER SUPPLY
 Pat. 2590 IA

They say: "It's the only one that can withstand continuous high overloads!"
Cooler Operation-Selenium rectifier application and conduction cooling dissipate over 3 times the heat.
Twice the Rectifier Power Rating with EPL Patented Design. Lowest Cosp Per Ampere Outpup.
Outpup 6v., 1-20 amps. (35 at peak). 2 units in parallel supply 6 v . at 40 amps .
Tests 2 Aupo Radios with push-button solenoids at same time; also motors, instruments, relays, other low voltage devices. NEW MODEL C-12 services both 12 v . and 6 v . auto radios.

- Names on request

ELECTRO PRODUCTS LABORATORIES
4501-Rb Ravenswood Avenue Chicago 40, III. Canada: Allas Radio Corp., Ltd.,

Brand New- Justoff The Press!

FREE MONEY TO ANY RADIO-TV SERVICEMAN WHO WANTS

 A BIGGER INCOME!- Learn how servicing of mobile equipment has becon
dollar business.
- Learn how smart radio servicemen are cashing in.
- Learn how smart radio servicemen are cashing in.
- Learn how you can get in on the ground foor, what the profits are, every step you lake in this expanding market. This is opporfunity knocking at your door. Don't miss out.
- Learn what the latest authentic FCC statisties aboul growing mobile service needs in this country mean to your future in mobile serviee n
radio servicing.

SERYIGINE 2-WAY

 Mobile Radio Systems Pays big moneySEND COUPON FOR FULI INFORMATION CLEVELANO INSTITUTE OF RADIO ELECTRONICS CLEVELANO INSTITUTE OF RADIO
4900 EUCLID AVE. DESK RO-57 CIEVELAND 3, OHIO
(ADDRESS TO DESK NO

IM 2.WAY MOBILE RADIO SERVICIMG

botion manculass Booklete
(ADDRESS TO DESK NO. TO AVOID DELAY)
I want to know the facts, withoul obligation, obout the profit oppor: tunity in 2 -way mobile radio servicing. Rush me your FREE bookle:: "There's MONEY FOR YOU IN 2.WAY MOBILE RADIO SERVICING."
NAME
CITY STATE
 if you paste on a 2 cent postcard

The use of individual channel-strip amplifiers is a far superior method of solving the problems found in Community Antenna Systems.

In making this statement, consideration has been given to the many interrelated problems inherent in the successful installation and operation of a Community Antenna System. These problems include:

1. Control of Signal Levels

With broad-band amplifiers there is no control over individual channels. Even if a broad-band system starts out with individual strips and employs automatic gain conat the antenna site, it is impossible to maintain proper signal level relationships through the miles of cable and the quantity of cascaded broad-band. amplifiers that are involved. Cable attenuation is not linear with frequency. Different makes of cable have different temperature variations, which in turn are seldom linear with frequency. In addition, the effects of cable deterioration are not linear.

Thus, the larger the system and the longer it has been installedthe greater the variations; the greater the need for individual control of each channel signal level in order to prevent the tivin evils of snow and cross-modulation. Only individual strip amplifiers can do the job properly and keep each channel at the proper level.
2. Broad-band Systems Use More Equipment

Broad-band amplifiers cannot be made with the gain or the high output that can be achieved with strip amplifiers. The gains of the broad-bands are generally about 20 db (40 db by stacking two amplifiers together). These amplifiers are spaced about 4 or 5 to a mile (at maximum rated output). To get 20 db , twelve tubes are used; for 40 db , twenty-four tubes are used.
Jerrold "W" strip amplifiers use only five tubes per channel and have gains of 54 db , outputs of 1.0 volt and are spaced 2,600 feet apart (about two to a mile). Because of the higher output, much greater lengths of feeder lines can be run, further reducing the number of amplifiers to cover any given area.
It can be proven by blueprint layout comparisons that in almost every case, strip amplifier systems will use less than $1 / 4$ the number of amplifiers that will be needed in broad-band systems.
3. Less Maintenance with Strip Amplifier Systems

Because less equipment is used in strip amplifier systems, there will be less maintenance. If one strip goes out in the strip amplifier system, it only affects one channel; when a broad-band amplifier goes out, all channels are gone.

Much is being made of the fact that in "chain" broad-band amplifiers, the failure of a tube does not affect operation because it only
changes the gain of an amplifier by 1.5 db . This claim is based on theory, not practice.
(a) The channel level balance in a system using these amplifiers is often so critical that failure of tubes in this manner definitely does affect operation and can throw the system into either snow or cross-modulation or both.
(b) A large percentage of 6AK5 tube failures are interelement shorts. This type of failure stops the entire broad-band system. Furthermore, the vastly greater number of tubes in a broadband system over a strip amplifier system means that there can be more systemstopping shorts, than the combined total of all tube failures which occur in a strip amplifier system.
(c) Maintenance becomes more complex. Even if it is assumed that the 1.5 db supposition is true, the failure of a tube leaves the subscriber with a useless connection. These tubes are not easily located, and meanwhile the entire system, all channels, are out of operation.
What is true in both theory and fact is that with individual strip amplifiers it is possible to maintain constant gain, even with tubes that are aging. By applying AGC to at least every third amplifier in a system, as tubes age, the AGC takes control. Periodic preventive maintenance checks catch the weakening tubes and the system does not fail (it does not drop the picture into the snow level; it does not cause cross-modulation). Maintenance is reduced tremendously using strip amplifiers, and the customers have better, more constant pictures.

As for shorts, Jerrold is now using the 5654 Military-Industrial version of 6 AK 5 . This tube is ruggedized and pre-selected. Troubles of all sorts are considerably reduced over the use of 6AK5 tubes. But even if a short does occur, it affects only one channel and not the whole system. Customers still have service on the other channels, and the tube failure is easy to locate.
4. Broad-band Systems Cost More (a) Initial cost using broad-bands is much higher because of the greater amount of equipment.
(b) Operation cost is higher because maintenance is higher.
I think it is important for these facts to be brought to the attention of your readers.

Jerrold Electronics Corp. Milton J. Shapp Pres.
Philadelphia, Penna.

Why Count Profits in Small Change? WHEN YOU CAN STACK IT IN $\mathbf{\$ \$}$

Dealers and TV Service Organizations selling DAVIS SUPER-VISION ALL-CHANNEL TELEVISION ANTENNAS do count their PROFITS IN DOLLARS

SOLD TO YOU WITH A MONEY-BACK GUARANTEE

BUILT BY AMERICA'S FASTEST GROWING ANTENNA MANUFACTURER

Copyright 1953

Trade Mark Reg
DON'T WAIT!. . . Get the "bIG DOLLAR PROFIT FACTS" from our Jobber's Salesman in your area. We will get him in touch with you.USE COUPON.

Brand New sithertis TUBES STANDARD BRAND WARRANTY

Bulk Packed in Original Mfr's Nested Cartons or Individually Boxed Every tube meter and chassis tested for top quality BRANDED

183GT	. 54	6 AC7	. 71	68H6 49	6SN7GT	. 49	12SN7GT	49
114	. 50	6AH6	. 64	6BJ6 49	$6{ }^{6} 8$. 64	19BG6G	1.19
1 R 5	. 49	6AK5	. 64	6BL7GT ... 82	SVGGT	41	1978 .	64
154	. 55	6 AL5	. 37	6BQ6GT . . . 79	SW4GT	41	25BQSGGT	82
155	. 41	64 65	. 41	6897 79	SW4GT	41	25BQ6GT	82
114	. 49	6AG5	. 49	8BK7 … ${ }^{\text {¢ }}$	6W6GT	. 31	25L6G	. 41
104	. 49	6AT6	. 34	6C4 34	6X5GT	34	3585	49
IU5	. 41	6AUS	. 37	6C5 44	12AT6	. 34	$35 C 5$. 49
1×24	. 55	6AV6	. 34	6C86 45	$12 A T 7$. 60	35L6GT	. 45
305GT	. 58	6B4G	. 82	6CD6G ...1.11	12AU6	. 37	35 W 4	. 32
354	. 49	6BA6	. 41	6H6 41	$12 A U 7$. 49	$35 Z 5$. 31
3 V 4	. 49	6BC5	. 49	6J5GT 37	12846	. 41	50B5	. 49
5U4G	. 37	6BE6	41	6J6...... . 54	128E6	. 41	$50 \mathrm{C5}$. 49
5Y3GT	. 34	6BG6G	1.19	6K6GT 37	12 BH 7	. 56	50L6GT	. 45

More than 400 types in stock. Include all your needs when ordering.
Orders less than $\$ 10.00$-add $\$ 1.00$ service charge. Terms: 25% with order, balance C. O. D All prices subject to change without notice. F.O.B. New York City. Mail order division

TRANSEMERICA HLECTRONICS CORP.

120 uberty St., NEW York 6; N. Y. 1 COrtIandt 7-4307

SERVICE TECHNICIANS

What was your most unusual service case? Not necessarily the most difficult one, but the one you will.remember longest, either because of the problem itself or because of other conditions surround ing the iob. If the experience was interesting to you, it probably will be to other readers of RadioEngCronis. We publish in this information to be worth more than $\$ 10$ in our opinion, it will be paid far at our regular space rates. Address your stories to

Unusual Service Job
RADIO-ELECTRONICS
25 West Broadway
New York 7, N. Y.

MODERN OSCILLOSCOPES AND THEIR USES

BY JACOB H. RUITER, Jr.
of Allen B. DuMont Loborotories, Ine 326 pages, 370 illustrotions, $\$ 6.00$
Here at last is a book that makes it easy for you to become expert in the many uses of the greatest, most versatile service instrument of all-the oscilloscope! It contains no involved mathematics. First, the author explains oscilloscopes fully-then gets right down to earth in telling exactly how to use them on AM, FM and TV service work ...from locating receiver troubles to aligning and adjusting the most complicated circuits.

HOW DSCILLOSCOPES WORK

Expert knowledge of oscilloscopes helps you work faster, far more accurately and more profitably on all sorts of service and laboratory jobs. Basic subjects
covered include: covered include
Oscillograph; 3-Development sinf 2-History of the Tube; 4-Principles of Cathode of the Cathode $R a y$ Tube, 4-Principles of Cathode Rat True Operation, The General-Purpose Oscilloscope. 7 Ray Tube; Circuits; 8-Amplifers, Altenudtors and Positionply Circuits; 8-Amplafers, Aitentuators and Positioning

HOW TO GET THE MOST OUT OF DSCILLOSCOPES ON ANY JOB

Each operation is carefully explained including the making of connections, adjustment of circuit com ponents, setting the oscilloscope controls and analyz ing patterns. About 400 illustrations including dozens of pattern photos make things doubly clear. Here are the specific how-to-do-it suhiects covered: $10-O p$ eration; 11 -Interpretation of Basic Patterns; $12-$ Ahxiliary Equipmenti 13-Typical Applications in Electronics; 14-Serpicin? A-M Receivers; 15-Serv ining F-M Recenvers; 16-Television Recerver Servicing; O-Use of the Radio Transmitter; 18-Using trial Uses; 20-Photographing Cathode Ray Tube Pat. terns; (a) Glossary. Send coupon today?
READ IT 10 DAYS . . . at our risk!
I Dept. RE-103, RINEHART BOOKS, Inc. I - Technical Division,

Se Mork 16, N. Y. Send MODERN OSCILLOSCOPES AND I【THEIR USES for $10-D A Y$ FREE EXAMINA. TION. If book is satisfactory, I will then send you $\$ 6.00$ promptly in full payment. If not, I will | I return book postpaid in good condition and owe you nothing.
Name.

Address

City, Zone, State
Employers' Name and Address
Price outside U.S.A. $\$ 6.50$, cash only.
1 Money back if you return book within 10 days. I

Any or all of these catalogs, bulletins, or periodicals are available to you on request direct to the manufacturers, whose addresses are listed at the end of each item. Use your letterhead-do not use posteards. To facilitate identification, mention the issue and page of RadioElectronics on which the item appears. All literature offers void after six months.

PICTURE TUBE COMPONENTS

Sylvania has issued a 4-page booklet describing tungsten and chemical components for TV picture tubes. Among the components described are screen phosphors, potassium silicate for screen settling, tungsten wire for cathode heaters, and triple carbonate cathode coatings.

Free on request from the Tungsten and Chemical Division, Sylvania Electric Products Inc., Towanda, Pa.

RADIO-TV CERAMICS

Stupakoff's latest 4-page brochure includes photographs and descriptive details on glass-to-metal seals, Steatite and other ceramics, printed circuits and ceramic-metal assemblies. A section is also devoted to the characteristics of Kovar glass-sealing alloy.

Request Bulletin No. 6.5.3 from the Stupaloff's \& Ceramic Manufacturing Co., Latrobe, Pa.

PICTURE TUBE DATA

Feder'al's 8-page, 2-color Picture Tube Data Book gives interchangeability considerations, basing diagrams, bulb outlines, and dimensions and electrical characteristics of picture tubes of most manufacturers.

Available free on request to the Vacuum Tube Department, Federal Telephone \& Radio Corp., 100 Kingsland Rd., Clifton, N.J.

TRANSFORMER CATALOGS

Stancor's 24 -page transformer catalog carries complete electrical and physical specifications on almost 500 transformers for radio, TV, hi-fi, amateur, and other electronic applications. Featured are 25 new units, including 13 TV components and 5 transistor transformers, an increased TV section, and an expanded hi-fi section including miniature audio transformers and more detailed information on the Stancor-Williamson amplifier

The company's 32 -page 1953 TV transformer replacement guide lists replacement information on over 5,600 TV models and chassis. It covers 101 brands in alphabetical order, by model and chassis number.

Both available without charge from the Chicago Standard Transformer Corp., Standard Division, Addison \& Elston, Chicago 18, Ill.

NON-LINEAR RESISTORS

Bulletin SR-3, IRC Varistors (nonlinear resistors) gives comprehensive data on voltage-current characteristics, current ratings, temperature characteristics, dimensions, and typical applications. The 6-page booklet is illustrated with charts and graphs.

Free from International Resistance Co., Special Products Div., 401 N . Broad St., Philadelphia s, Pa.

The Magnemite*
 Battery-Operated Spring-Motor Portable Recorder

Field recordings can now be made with equivalent quality and with as little effort as studio console recordings. Smaller than a portable typewriter ($111 / 2 \times 10 \times 8$ inches) and weighing 15 tbs. including the drycell bateries that last 100 operating hours, the Magnemite* is easily carried and operated anywherc.

Here ore truly professional specifications:
Model 610-5D ($71 / 2 \mathrm{ips}, 50$ to 7500 cycles meets NARTB standords.
Model 610-E (15 ips, 50 to 15,000 cycles) meets primary NARTB standards.
Dynamic range 50 db .

- Flutter $\pm 0.1 \%$.

Constant speed governor-controlled.
Monitoring and playback, facilities.
Write for complete technical literatnare and direct factory prices to Dept. RE

AMPLIFIER CORP. of AMERICA

398 Broadway, N. Y. 13, N. Y.

- Trade Mark Reg. Pat. Pend.

ALPPRITF
Studio Microphones at P.A. Prices

Ideal for BROADCASTING RECORDING public adoress
"The ultimate in microphone qualify:" soys Evan Rushing, sound engineer of the Hotel New Yorker.

- Shout right into th new Amperite Micro. phone-or stand 2 feel away-reproduction is always perfect.
- Not affected by any climatic conditions. - Guaranteed to with. stond severe "knocking oround.'

"Kontak" Mikes Model SKH, list $\$ 12.00$ Model KKH. list $\$ 18.00$

Introductory Offsr.
Special write for Special Intoo focion
Offer: and 4-pago illustroted foldar.

AMPERITE Cmpany_Ins

S61 BROADWAY • NEW YORK 12. N. Y
Canada: Allas Radio Corp., Lid., 560 King St. Wi, Toronto

KNOB CATALOG

Gee-Lar's 16 -page well-illustrated catalog shows and describes hundreds of molded knobs for radio and television equipment. Switches, TV antenna mounts, connectors and other hardware products are also listed

Ask for Catalog No. 55 from Gee-Lar Mfg. Co., 1330 10th Ave., Rockford, Ill.

A.C. ERASURE

Sound-Talk Bulletin No. 24 discusses a.c. erasure of magnetic tape. The 2-page technical bulletin describes the theory and practice of a.c. erasure, and covers such points as orientation, speed, and number of passes required.

Free from Minnesota Mining and Manufacturina Co., 900 Fauquier St., St. Paul 6, Minn.

LINE AND SLIDE SWITCHES

Stackpole's line and slide switches for radios, TV sets, appliances, small motors, toys, instruments and similar equipment are described in a 16-page bulletin, RC-9B.

Included are specifications, dimensions, and application data for seven new line switches recently developed for use with Stackpole variable composition resistors.

Available on letterhead request to Stackpole Carbon Co., Electronic Components Div., St. Marys, Pa.

SELENIUM RECTIFIER

Westinghouse's new type K Magamp selenium rectifier is described in a new 8 -page booklet. Although developed for magnetic amplifier circuits and sensing devices this rectifier may be used wherever improved rectifier characteristics are needed.

The booklet includes the definition of selenium rectifier terms and electrical characteristics; graphs showing reverse current leakage limits and forward current-voltage drop under various conditions.

Request Booklet TD-52-6.50 from the Westinghouse Electric Corp., Bох 2099, Pittsburgh 30, Pc.

ELECTROLYTIC CAPACITORS

Astron has issued a new catalog supplement for its expanded line of twistprong electrolytic capacitors. Included are catalog numbers, capacitance and voltage ratings, case sizes, and list prices of all standard twist-prong capacitors for radio and TV replacement needs.

Copies of Supplement AC-3A obtainable from Astron Corp., 255 Grant Ave., E. Newark, N.J.

DECIMAL EQUIVALENTS

Meyercord has printed a time-saving decal showing decimal equivalents in 64 ths. Designed for application to slide rules, T-squares, drawing boards, desk tops and other similar equipment, the decal measures $6 \times 1 \frac{1}{4}$ inches. The figures are printed in sharp black and red type on a white background.

Free on request to the Mayercord Co., 5323 W. Lake St., Chicago 44, Ill.

5 TUBE AC/DC SUPERHET KIT Easy to build, schematic, illuminated dial, all parts, walnut plastic cabineta REAL BARGAIN $\$ 11.99$ ea.

FAMOUS MAKE TV COMPONENTS $5^{\prime \prime}$ PM Speaker, Alnico \#5 . 68 oz.... $\$ 1.25$ ea.
$500 \mathrm{mmfd}-20 \mathrm{KV}$ Aerovox $\mathrm{HI}-\mathrm{Q}$ Cond.
.59 ea. Lightning Arrestors … 54 ea $6 \times 9^{\prime \prime}$ PM Speaker \ldots. Cascode Tuner $\$ 18.50$ ea.

PURE POLYETHYLENE WIRE

55 MIL-22 GA wire	1000 ft	$\$ 12.00$
100 MIL-20 GA wire	1000 ft	$\$ 18.00$
TUbUIG TWIT Lead	1000 ft	$\$ 29.65$
MINIMUM ORDER $\$ 5.00-A L L$	MERCHANDISE FULLY	
GUARANTEED. 25% DEPOSIT		
FORATH ORDER, BAL COD.		

FREE GIFT to Rose Co. Customers!

|Terms: Min. Order \$5. Send
M思

OPP:ORTUNITY ADLETS

Rates-45s per word (including name. address and Initials). Minimunt ad 10 words. Cash must uccompany all ads except those placed by arcredited agencles. Dis-
count 10% for 12 issues. Misleallng or objeetionable ads not accepted. Copy for December issue must reach us before October 21. 1953.

```
Radio.Electronics, 25 W. Broadway, New York 7, N. Y.
```

APERKEERS RELALIUED at wholesale prices, Guaranteed worknanship. Fast service. Amprite Speakers Service Worknanship. Fast service. A
70 vesey St. New York 7, N. Y

LEPAIIS SEIRVICE-ALL MAKES INSTRUMENTS IREpaired by factory staff. Simpson, Heath, Triplett, etc. Immedtate service. Douglas instrument
TUBES AND EQUIPMENT BOUGHT, SOLD AND EX CHANGED. For a falr deal send details to B. N. Gensler

WE REPSHK ALL MALES OF FLECTRICAL, INSTRUMENTS and lesting efuibuunt. Write for free catalogue
on new and used insimmens at a savings. Hazelton on new and used instruments at a savings. Huzelton
Instrument Co.. 128 Liberis Street. New York 6. N. Y.

WANTED: AN/APIT-4, other "APR-" "TS." "IE-", ARC-1, ARC-3, ABT-13,
mC-348, etc. Microwaye EquipMent. everyting Equipment. Meters, Fast Aetion. Falr Treatment. Toj Dollar! Liltell, Fairhills Box 26, Dayton 9, Olio.

TAADE:-IN TELEVISIONS WOIRKING. WHILE THEY W4API, 1420 S. Kandolph. Arlington. Virginla.

COAXIAL CABLE: WE ARE HEIPLACING SINGLE COALELD coas with double shield in our community system, and have the following used cable for sale: HG11U @ 78 and Ma59U @ t per foot. Minlimum order 200 feet t.o.b. New I'hiladelnhia T-X ANTENNA
ligh Are.. New Phladelphia. Ohio.

TV FM ANTENNAS. ALL TYPES INCLUDING UHF Mounta, accessories. Lowest prices. Wholesale Supply Co. Lunenburg 2 , Mass.

Special Offer On This

 Complete RADIO ENGINEERING LIBRARYNew, Up-To-Date Edition of Fa. mous Library Covers Whole Field of Radio Eugineering. Places Latest Facts, Standards, Data Practice, and Theory At Your Fingertips
The five big volumes of the new edition of the Radio Engineering Library now molude the very latest facts, standards, data, and practice. This Library will help solve hundreds of problems for designers, researchers, engineers, and students in any field based on radio.
Written by leading radio engineers, these books cover circuit phenomena, networks. tube theory, vacuum tubes, amplification, measurements, etc--give specialized treatment of all fields of practical design and application. They provide you with a complete and dependable encyclopedia of facts.

- 5 Volumes, 3872 Pages, 2770 Illustrations

- Eastman's FUNDAMENTALS OF VACUUM TUBES. 3rd Edition.
- Terman's RADIO ENGINEERING. 3rd Editlon.
- Everitt's COMMUNICATION ENGINEERING, 2nd Edition.
- Hund's HIGH frequency measure. MENTS. 2nd Edition
- Henney's RAdIO ENGINEERING HAND. BOOK. 4th Edition.

SEND NO MONEY

Special Low Price-EEasy Terms

On this special offer you get this Library for $\$ 37.50$. Instead of $\$ 43.50$. You save $\$ 6$ and may pay on easy terms. Mail coupon below to examine the Library FREE for 10 days. No obligation. These books are recognized as standard works: you are bound to need them. So take advantage of this special money-saving offer. Mail couton al once!

MeGraw.Hill Book Co., Dept. RE-10,

- 327 West 41 st St., New York 36, N. 'Y.

Send for 10 days FRER trial, the RADIO ENGINEERING LIBRARY. If not satisfied I plus delivery charges, then; and $\$ 6$ a month for 5 months. (Reg. price $\$ 43.50$, you save $\$ 5$).
Name
Home Address
City \& State RETO

Employed by

\square We'll Pay Delivery Charges if you enclose \$7.50 first payment WITH coupon. Same return privilege for full refund.

TELEVISION AND RADIO REPAIRING, by John Markus. Published by McGraw-Hill Book Company, Inc., New York, N. Y. 6×9 inches, 556 pages. Irice $\$ 7.95$.
This repair manual differs basically from any we have read. It is prepared for persons who know absolutely nothiny about radio or the use of tools. In simple language and with the aid of clear illustrations, it teaches how to solder, test tubes, read meters, and some of the fundamentals of business. It emphasizes the test, removal and replacement of parts, batteries and tubes. The latter come in for special attention. The author points out that they are responsible for about half of all troubles. This book does not cover trouble-shooting or trouble-localizing as most books do.

Interesting and practical chapters also include pickups and needles, antennas, tuning devices, and service-call suggestions.

The author of this book is highly optimistic. He states that any person who reads the manual becomes qualified to repair 75% of all radio-TV sets. Also, he feels that the life of an independent radioman is a happy one. He notes that the service technician can smoke, relax, listen to music while working, take a day off at will, and even write his own pay-check.

Unlike most books that are purportedly written for the novice, this text very scrupulously maintains an even elementary level. The author defends his position, that of preparing the reader to handle 75% of all service troubles, by very carefully covering the rudiments of day in and day out radio routine. Since the majority of receiver breakdowns are the result of tube failures and obvious defects such as resistors that have burned, the ability to test tubes and check for shorted or open capacitors should enable the beginner to handle most routine problems.

The book is recommended to technician's helpers who want to know something about radio. Radio-TV owners may also find it useful and practical. $-I Q$

TV TROUBLE TRACER, Volume 2. Published by Harry G. Cisin, 200 Clin ton Street, Brooklyn, N. Y. $51 / 2 \times 81 / 2$ inches, 46 pages. Price $50 \dot{\phi}$.
This booklet can be helpful to TV owners and can save time for service technicians. It lists 40 typical TV troubles. They include vertical roll, insufficient width, ghosts, foldover, ion spot, etc. Each symptom is followed by probable causes and remedies.
The author has devised a novel timesaving method for localizing troubles due to defective tubes. He lists over 500 different models from more than 40 manufacturers. A tube lineup is given for each model, and each tube is associated with a significant letter, such as H for horizontal, B for brightness, S for sound. Thus if tube trouble is suspected, it is easy to locate the one that is responsible.
$-I Q$

You've asked for more-and here it is-the fourth volume that brings you right up-todate! It's the only book that shows the position and function of all tubes in hundreds of TV sets. Helps save your servicing ime. Often an operational check in the customer's home -looking at the picture and listening to the sound-gives you the clue to the trouble Most often, a tube failure is the cause. This invaluable Guide makes trouble diagnosis and tube replacement quick and easy, uithou: removing the chassis! Each TV model has its own clear, accurate diagram. Fully indexed for quick reference. All new diagrams covering 1951-1952 TV models. Handy pocket size 192 pages, $51 / 2 \times 8 \frac{1}{2}{ }^{\prime \prime}$. Pays for itsolf on the first job!
first job!
ORDER TGL-4. Only
$\$ 200$

Own the Complete Library

VOL. 3. Used daily by thousands of TV Service Technicians. Shows location and function of all tubes in hundreds of 1950 1951 TV sets. 192 pages. $51 / 2 \mathrm{x}$ 81/2".
ORDER TGL-3. Only
$\$ 2.00$
VOL. 2. Gives tube positions and functions in hundreds of 1949-1950 TV sets. Helps solve tube failure troubles in minutes. 208 pages, $51 / 2 \times 81 /{ }^{\prime \prime}$
ORDER TGL-2. Only
$\$ 2.00$
VOL. 1. Covers hundreds of 1948-1949 TV sets made by 56 mfrs . Not duplicated in other volumes. 208 pages, $51 / 2 \times 81 / 2^{\prime \prime}$ -
ORDER TGL-1. Only.
$\$ 1.50$
Carry Them All in Your Tube Caddy

BASIC THEORY AND APPLICATION OF ELECTRON TUBES Published by the U. S. Government Printing Office, Washington, D.C. (TM 11-662/TO 16-1$255) 8 \times 10$ inches, 215 pages. Price $\$ 1.00$.

This book will help beginners, students and applicants for radio licenses. It is an orderly presentation of facts relating to tubes of all types. Tube construction, calculation of constants, examples of applications are clearly shown. Large graphs show how to calculate amplification factor, plate resistance and mutual characteristics. The last few chapters cover transmitting and special types. One chapter describes how to use a tube manual effectively.
Each of the 12 chapters is divided into paragraphs which are numbered. This makes it easy to remember or note material which a reader may want to review or remember. Also it is easier to find information in the index.

Each chapter ends with review ques-tions.-IQ
ALIGNMENT TECHNIQUES by Art Liebscher. Published by John F. Rider Publisher, Inc., 480 Canal Street, New York 13, N.Y. $51 / 2 \times 81 / 2$ inches, 123 pages. Price $\$ 2.10$.

This book is devoted entirely to the sweep alignment method of testing and adjusting TV receivers. It discusses markers and illustrates many sweep curves. Separate chapters show how to align video and sound i.f. amplifiers, discriminators and video amplifiers. The author suggests testing the video channel in two steps: square-wave methods for the i.f.; sweep technique for the h.f. He shows how to do this effectively. The last chapter is a brief presentation of u.h.f. alignment. The entire subject is well covered, but there are no schematics or block diagrams to show how test equipment is set up.

The author introduces a novel and efficient method for oscillator alignment. He applies a standard i.f. signal to the first detector along with the local oscillator signal. The beat generates a "supermark" near the carrier frequency. By varying the frequency of the oscillator, the supermark will approach the carrier marker along the sweep curve. When the oscillator is correctly set, the supermark and carrier markers will coincide. Alignment is quickly done since the same i.f. may be used on each channel.- $I Q$

DATA AND CIRCUITS OF MODERN

 RECEIVING AND AMPLIFYING VALVES (supplement 2) Published by Philips Technical Library. Distributed by Elsevier Press, Inc., 300 Park Ave., New York, N.Y. 6×9 inches. 487 pages. Price $\$ 6.50$.Tubes or "valves" give best results when used in appropriate circuits. Therefore circuit information is as important as tube data. This book gives both. All Philips tubes designed between 1945 and 1950 are included. Equivalent American types exist for practically any Philips tube, so the reader may convert and utilize the data.

The tube information includes all necessary average and maximum values, warm-up time for rectifiers, coupling

This new book on Modulation Theory is designed to give both Students and Engineers a broad knowledge of all systems

Modulation is fundamental to any process of communication. Modulation involves change, because the received signal must change in a way that the receiver cannot predict. This book treats all systems on a unified basis and in terms of the new theory. This is made possible by the first eight chapters which contain the pertinent parts of the generil philosophy and provide a
framework whereby one system can be compared with another on a rational basis consistent with recent theoretical advance. The last twelve
chapters contain theoretical treatments of parchapters contain theoretical treatments of particular modulation systems, some old and some modern theoretical and informational concepts of these particular systems.

MODULATION THEORY
 BY HAROLD S. BLACK

Member of the Technical Staff
Bell Telephone Laboratories, Inc.

This book deals with the process by which the message to be conveyed is uniquely specified and unambiguously represented by information-bearing signals that are suitable for transmission over the medium. Included are related processes whereby the message is recovered and delivered to the designated recipient in whatever form desired, when and where it is wanted. The principles of sampling, quantization, code transmission, and multiplexing are treated analytically. The statistical properties of noise and message material are considered in relation to efficient systems of communication, and it is shown that band width may be conserved by taking advantage of redundancy in the message. This treatment uses mathematics, but is written so that much can be learned even if the mathematics is ignored. Emphasis is placed on the basic consideration of methods to make this book valuable as a text. useful as a reference, and suitable for home study without a teacher.

Judge the Tremendous Scope of this New Book From the Following Brief Outline:
Historical Background - Why Modulate? - The Sampling Principle - Quantization, Code Transmission, and Multiplexing - Efficient Systems of Communication - Speed of Signaling and

Examine this Great Book FREE Channel Capacity - Reduction of Signal Power Channel Capacity
through The Use of Redundant Codes. Amplitude Modulation Amplitude Modulators and Demodulators - Amplitude-Modulation Systems - Frequency Modulation - Frequency Modulators and Demodulators. Noise and Interference in FM Systems : Pulse-Modulation Essentials - Puise-Amplitude Modulation - Pulse Duration Modulation - Pulse-Position Modulation - PulseCode Modulation - Mobile PulseModulation Systems.

between diode plates, microphony, etc. Circuit information includes coil design, recommended schematics (with component values), how to eliminate hum, shielding, etc. Large tube graphs are drawn on each type of tube.
The last 40 pages offer a description of Philips test instruments. $-1 Q$
THE FLIGHT OF THUNDERBOLTS. by F. J. Schonland. Published by Oxford University Press, Amen House, E.C. 4, London, England. $51 / 2 \times 83 / 4$ inches, 152 pages. l'rice $\$ 3.00$.

Man has learned how to generate, distribute and utilize electricity, but has made little headway with nature's own brand, lightning. However, much of the hazard of lightning has been minimized. We know how to protect ships, build-
ings and power lines to a great extent. This book gives a full account of our present knowledge of lightning, its causes and effects.

Beginning with early times, the book describes the superstitions and fears connected with thunderbolts. It lists important fires and explosions caused by them. The invention of the lightning rod by Franklin changed all this. The interesting experiments which led up to this invention are given in some detail.

The book describes the safest spots inside a building and out-of-doors when lightning strikes. It details the latest methods for protecting livestock, telephone lines, ships and aircraft. Equipment used to record and investigate lightning is described. $-I Q$

REALCM|ETUBE WHOLEDAL PRICES!

Tube Orders Over $\$ 15.00$, with full remittance. Prepoid to you in USA.

Stock up now on these amazing tube values! All tubes are of popular brands and fully guaranteed.

ODDS \& ENDS!
ERCO MARINE TRANSMITTER-RCVR
4 channels. 12 V.DC. operation FCC approved. New, complete (less xtls) Write for details.

BRAND NEW VIBRAPACKS

12 V.DC. input. 300 V.OC. @ 125 ma . output.
Complete with vibrator. $\$ 12.95$
TRIMM FEATHERWEIGHT HEADSET
4000 ohms impedance. New orig. boxes. $\$ 3.75$
WESTERN ELECTRIC CHOKE
8 hy- $300 \mathrm{ma}$.65 ohms D.C. Resis. Hermetically
sealed in steel cases.
WESTERN ELECTRIC SWINGING CHOKE
$6.5-4.3$ hy. @ $200-620 \mathrm{ma} .42$ ohms. Hermeti-
cally sealedt in steel cases.
JENNINGS VACUUM CONDENSER
50 vuf. @ 20 kilovolts
59.95

PANADAPTOR-5 INCH SCREEN
Model SB.I, type 200.100 Kc . sweep. 115 V.

B AREREM

1368 Liberty Street, N. Y. 6, N. Y. REctor 2-2562

ADVERTISING INDEX

Adelman, Nat
All Channel A
All Mail Sales
Allied Radio Corp
American Microphone Co
American Phenolic Corp.
American Television \& Radio Co
Amperite Co., Inc.
Amplifier Corporation of America
Arkay Radio Kits, Inc.
Astron Corp.
Atlos Sound Corp.
Audel Publishers
Barry Electronics
Belden Manufacturing Co
Bell Telephone Labs
Best Electronics
Blonder-Tongue Labs
Brooks Radio \& TV Corp.
CBS Hytron (Division of Columbia
Broadcasting System)
Cadillac Electronics Co
Cannon Electric Co
Capitol Radio Engineering Institute
Centralab-Div. of Globe Union
Century Electronics Co.
Channel Master Corp
Chicago Standard Transformer Corp.
Cisin, H. G.
Clorostat Manufacturing Co., Ine
Cleveland Institute of Radio Electronics
Coast Electronics
Commissioned Electronics
Concord Radio
Cornell-Dubilier Electric Corp.
Cornish Wire Co
150
Corne Electrical \& TV Radio Schoal97, 145,
Davis Electronics
DeForest's Training, Inc.
Delco Radio (Div, of General Motors Corp.) Edlie Electronics
Electro Products Labs
Electro-Voice, Inc.
Electronic Instrument Co., Inc.
Electronic Measurements Corp.
Federal Telephone \& Radio Corp
G \& H Wood Products Co
General Electric Co
General Industries Co.
General Test Equipment
Gernsback Publications, Inc Heath Co.
$15,92,93$
$\cdots 170$
82. 83

146
30.31
125

Hickok Co.
Hudson C_{0}
Hudson Rodio \& TV Corp.
Hughes Research \& Development Labs
Indiana Technical College
Instructograph Co
international Correspondence Schools
Jackson Electrical Instrument Co.
Jab Sales Corp.
Jensen Industries
Kay-Townes Antenna Co
Kedman Co.
Leader Electronics
Leotone Radio Corp.
Mallory and Co Inc P. R IT................ 17
Mannfred Electronics., P. R.Inside Back Cover
Mattison Telavision
Mattison Television \& Radio Corp.
MeGraw Hit Book
Merit Coil \& Transformer Co
Moss Eelectronic Distributing Co
National Electronics of Cleveland
National Electronics of Cleveland
National Schools
Nidisco
Ohmite Manufacturing Co.
Opoortunity Adlets
Oxford Electric Corp
Permo, Inc.
Permoflux Corp
Philco Corp.
Phillips Tube Co
Plastoid Corp.
Precise Development Corp.
Precision Apparatus Co., Inc.
Premier Radio TV Supply (Div. Continental 10
Prentice-Hall, Inc.
Pres-Probe Co
Progressive Electronics
Quiefrole Co.
RCA Victor Divis Inc
RCA Victor Division (Radio Corporation
of America)Inside Front Cover, Back Cove
Radelco Manufa
Radelco Manufacturing Co
Radiart Corp.
Radio City Products
Radio Merchandise Sales
RADIO SCHOOL DIRECTORY PAGE 171 American Electronics Co.
Candler System Co.
Capitol Radio Engineering Institute
Commercial Trades Instifute
Indiana Technical College Indianopolis Electronic School

The $\underbrace{}_{\text {series }}$ -available through radio parts distributors and electrical wholesalers everywhere

Cannon's famous XL Connertor Series for audio applications is avaiable in 14 shell designs through Radio Parts Distributors and Electrical Wholesalers. These lightweight, compact connectors embody many desirable features: adaptable either to cord end or wall mounting applications ...convenient latchlock coupling device ... cable entry with compression gland and relief spring or integral clamp ...tapped metal for insert retaining screw... provision for special grounding contact or grounding to shell. Accessories include dust caps and adapter shunts, receptacles for integral mounting on microphones and other audio components. Watch for the colorful Cannon counter display carton at your Radio Parts Distributor.

NOTE TO JOBBERS AND WHOLESALERS:
Be sure the name "Cannon" is on every plug you buy...it's your cusfomers' guarantee of satisfaction. For complete details send for Bulletin RJC-6.

XL Connectors are
 available in 14 shell designs shown here. Watch for this Cannon XL counter display carton.

CANNON ELEGTRIC

Since 1915

Cannon Electric Co., Los Angeles 31, Cal.
Factories in Los Angeles, Toronto, New Haven. Representatives in principal cities. "Address inquiries to Cannon Electric Co., Dept. J-144, Los Angeles 31, California.

Milwaukee School of Engineering
RCA Institutes, In
Tri-State College
Valparaiso Technical Institute
Western Television Institute

Radio-Television Training, Ass'
Radion Corp.
Raytheon Manufacturing Co.
Regency Div. (I.D.E.A., Inc.)
Reliance Merchandising Co.
Rider, Inc., John F.
Rinehart Books, Inc
Rose Co
Sams \& Co., Inc., Howard W
Sangamo Electric Co
Scala Radio Co.
Shure Bros
Simpson Electric Co
Sprague Products Co.
Sprayberry Acadery of Radio
Sprayberry Academy of Radio
Stan-Burn Radio \& Electronics
Stephen Sales Co.
Steve-El Electronics Corp.
Steve-El Electronics C
Supreme Publications
Supreme Publications
Sylvania Electric Products
Sylva
Tallen Co. Inc.
Tape Master, Inc.
Tech-Master Product
Technical Applionce Co
Telematic Industries Inc
Telesound Corp.
Television Communications Institute
Television Materials. Inc
Transamerica Electronics
Transvision, Inc.
Trio Manufacturing Co
Triplett Electrical ins
Tung-Sol Electric Co.
Turner Co., The
United Technical Labs
Utah Radia Products Co.. Inc.
Van Nostrand Co., Inc., D.
Vidaire Television Co.
Visulite Ca.
Waldrom Electronics
Westinghouse Electric Corp
Wholesale Radio Parts Co., Inc.
Windsor Electric Tube Ca
Zingo Products
Radio-Electronics does not assume responsibility for any errors appearing in obove index.

GET INTO TV SERVICING

Send
you
sena America's fearling $T V$ a suycessful ${ }^{\text {TV }}$ techniclan.
speciallized

WESTERN TELEVISION INSTITUTE

Intenstre. spectatzetd course meduding strong basio in
mathematics and electrical entineering, advanced radio theory and design. telerision. Jodern tab. Low tuition. Self help opportunlties. Also IS.S. degree in 27 montha
in Aeronatical. Chemlcal. Civil. Electrical. and
 INDIANA TECHNICAL COLLEGE

```
1510 E Washington Blyd Fort wayne 2. Indiana
```


TOPS in TV

 TRAINING

DEGREE IN 27 MONTHS
Complete Radio Engineering course inciuaing ielev U. H. F. and F. M. Bachelor of Science Degree aiso in Mech., Civil, Elect., Chem., and Aero. Eng.; Bus. Adm., Acct. Extensive campus, modern buildings well equipped labs. Low cost. Prep courses. Personal 107月 service. Growing shortage of engineers service. Growing shortage of engineers
Prepare now. Approved for Korean vets Enter Jonuary, March
Wrire for cotalog.

Thath TBLSTATE COLLECE
 24103 College Ave. ANGOLA, IND

RADIO-TV ELECTRONICS

placement service for krads Courses offered- katlo Fukinering (Pratical or TV En乡inecring, TV. FM, AM Servicing.

CAPITOL RADIO ENGINEERING INSTITUTE Dept. RE, 3224-16th St., N.W., Washington 10. D.C.

RCA INSTITUTES, ING.
A service of Radio Corporation of Ameriea
350 West 4 th St., New York 14. N. Y.
OFFERS COURSES IN
RADIO, TELEVISION, ELECTRONICS
Approved for Veterans
Write Dept. RC-53 for Catalog
ζ GET INTO ELECTRONICS

TV REPAIRMEN MAKE TOP MONEY!

In just 39 weeks, you can ge complete TV service training Streamlined course gives you al essentials for a good iob as service technician. Graduates in great demand; iobs are plentiful in this growing field. Other courses in electronics radio operation and maintenance. Day or evening classes: modern equipment. Opportunity for employment in local industry.

Wrile for Gatalog 111 Today
INDIANAPOLIS ELECTRONIC SCHOOL 312 E. Washington, Indianapolis 4. Ind.

2
Bachelor of Science Degree

Major in Electronics or Power. Now, prepare for a career in these rapidly expanding fields.
This school will prepare you to become an engineer, technician or service man. Previous military, academic or pract eal training may be evaluated for advanced credit

Enter Both Radio and Television

In 12 montins you can attain the RadioTechnician's certificate. An added 6 months course qualifies you for the Radio-TV Technician's certificate and the Degree of "Associate in Applied Science." The Technician's course is the first third of the program leading to a Bachelor of Science Degree in Electrical Engineering with a major in Electronics
Also offered: 12-month Radio-TV service course; 12-month Electronics or Electro Technician Courses; 6-month Electrical Service Course and 3-month refresher and general preparatory classes

Terms Open Oct, Jan., April, July Famous for its Concentric Curriculum. Faculty of specialists. 50,000 former students. Annual enrolment from 48 states and 23 overseas countries. Nonprofit. 50th year. Courses approved for Veterans. Residence courses only.

MILWAUKEE

SCHOOL OF ENGINEERING

MILWAUKEE SCHOOL OF ENGINEERING Dept. RE-1053. 1025 N. Milwaukee

Send: \square Free 45-page "'Your Career" booklet delet on Careers in Radio-TV.

I am interested inn-onerne name of course
\qquad
Address.
City_{3} \qquad
If veteran, indicate date of discharge.

QECTIFIER XFMRS

POWERSTATS \& TEST EOUIPMENT

 ES *From This Special List We Ship $\$ 10.00$ and
Up Tube Orders At Our Expense (Post paid Within Continentol Limitts of U.5.

REDUCED METER SPECIALS

$$
\begin{aligned}
& 0.30 \\
& \text { Lev } \\
& \text { Les } \mathrm{Sh} \\
& 0.15 \mathrm{y} \\
& \text { Boucy }
\end{aligned}
$$

Dept. 10RE 111 LIEERTY STREET. NEW YORK 6, N. Y., U.S.A

SOCRET ASSEMBLII:S

-AYOKETEWELGET
 1" JEWEL Candelabra (gacreve busce ${ }^{\text {S9e }}$ MELPOTST MINUTE SPECIALS SEKAMZ SOK OHM 10 TURE O.S\% $\$$ e.9s

 Racing cono os waxed for cabiling for 1.39 LACING CORD
Kin
MILLE Inhallation $M / 4$. ORLatiation NOSed, WHALE THI:Y LAST Money Back Guarantee (Cost of Mdye: Onlyl $\$ 5$ Min. Order F.O.B. N.Y.C. Add Shpg. Charges. or 25% Prices subject to Change Witheut Notles. Phone 1 ector 2-62415.

Approved Precision Quallity

Put More Service Life Into All Your Jobs

Whenever Mallory FP Capacitors go into a service job, your customers can lie sure of more hours of entertainment . . . you can be sure the job is done right . . . once and for all. For all your service work, you'll get better results with Mallory Capacitors. They are engineered to meet the electrical requirements of any TV or radio set. They'll give performance that is equal to . . . and often better than.., the original equipment.
What's more, Mallory FP Capacitors are the only fabricated plate capacitors available to the replacement market. You can depend on them to give longer life at higher temperatures and greater ripple currents. They will give trouble-free performance at $185^{\circ} \mathrm{F}$. $\left(85^{\circ} \mathrm{C}\right.$.).
Any way you look at it, dependable service work builds satisfied customers. The next time you order capacitors, ask for Mallory FP's. They will put an end to call-backs due to capacitor failure . . . yet they cost no more.

For plastic tubular replacements, specify Mallory Plascaps ${ }^{(1)}$. Their improved moisture proofing will put an end to shorts. No off-center cartridges . . leads are permanently secured.

Have you hung up

It pays to keep good company . . . and it's good business to advertise the good company you keep.
Thousands of dealers and servicemen are using the sales-magic in the RCA name to instill confidence in their customers. Identifying your name with RCA pays off in dollars and cents.
And it's so easy to do . . . because RCA's new Dealer Identification Program provides you with a handsome "shingle" with your name on it, that you'll be proud to display in your shop. When a customer sees this Dealer Identification Plaque he knows you are using the best tube products available.
So, we ask . . "Have you hung up your shingle yet?" If not, be sure to see your RCA Tube Distributor today and learn how you can qualify for a Registered Dealer Plaque at no extra cost.

Unlock the door to bigger profits

Here's your key to better business . . . RCA's dynamic Dealer Identification Program. Ask your RCA Tube Distributor for your copy of the colorful, 16-page booklet
 "A Magic Pass-Key to Customer Confidence." It tells you how - for the first time-you can become a Registered Dealer . . . and get extra sales benefits.

RADIO GORPORATION OF AMERICA

ADV Plans,

Copyright Notice:

The entire contents of this CD/DVD are copyright 2014 by ADV Plans, LLC. All Rights Reserved.

Reproduction or distribution of this disk, either free or for a fee is strictly prohibited. We actively monitor and remove listings on eBay thru Vero.

You are free to copy or use individual images in your own projects, magazines,
 brochures or other school projects.

Only the sellers listed here are authorized distributors of this collection: www.theclassicarchives.com/authorizedsuppliers

Please view our other products at www.theclassicarchives.com, or our ebay stores:

[^0]: RADIO-TELEVISION TRAINING ASSOCIATION
 1629 Broadway, Radio Gity Station, New York Ciry 19, N. Y. licensed by the state of new rork

[^1]: Audio Consultant, New York City.

[^2]: ${ }^{1}$ Baxandall, P. J., "Negative feedback tone conBaxandandependent variation of bass and treble
 trol-independer without switches," Wireless World, October, without Swi
 ${ }^{2}$ Johnson, E. E., "A continuously variable loutness control,"' Audio Engineering, December, 1950. p. 18

 Winslow, J. "Full-range loudness control," Audio Engineering, February, 1949, p. 24
 Colebrook, F. M., "A note on the theory and practice of tone correction," Wireless Engineer. January, 1933, p. 4

[^3]: * Raytheon Manufacturing Company, Television and Radio Division, Chicago, IIl.

[^4]: * Author: Mandl's Television Servicing

[^5]: * JFD Manufacturing Co., Inc

[^6]: "Miss Spaget, here, is in charge of our Coil Winding Department."

[^7]: ## MAIL COUPON FOR FREE BOOKLET

 ## CAPITOL RADIO ENGINEERING INSTITUTE

 Dept. 1410, 3224 16th St. N. W., Washington 10, D. C. Send hooklet "Your Future in the New World of Electronics" and course outline. (\square Practical Radio Enyineering
 CHECK
 FIELD OF
 \square
 Broadcast Radio Enjineering (AM, FM, TV)
 GREATEST \square Practical Television Engineering
 GREATEST
 INTEREST \square TV, FM \& Adranced AM Servicing
 INTEREST $\quad \begin{aligned} & \square \text { TV, FM \& Advanced AM Servic } \\ & \square \text { Aeronautical Radio Engineering }\end{aligned}$

[^8]:
 TERWS_Cash with Order or 250% Deposit-Balance
 C.O.O.Net 10 Days to Rated Accounts. All Prices

[^9]: ## FREE BOOK—FREE TRIAL COUPON!

 COYNE ELECTRICAL \& TELEVISION-RADIO SCHOOL, Dept. A3-TI 500 S. Paulina St., Chicago 12, III. YES! Send 6-volume "Applied Practical Radio-Television" for 7 days FREE TRIAL per your offer. Include TV-Radio Patterns \& Diagram book FREE.
 \qquad
 \qquad
 City. Zone. . . State. tate....

[^10]: Dept. RE-103, Rinehart Books, Inc., Technical Division, 232 Madison Ave.. New York 16, N. Y.
 send books indicated for 10 -day FinFE
 either schly sou frice ithicated or return books nostpald and owe nothing.
 \square Radio \& TV Receiver \square Radio \& TV Receiver

 Price $\$ 6.50$
 \square SPECIAL COMBINATION OFFER . SAVE \$1.25!
 Both Books only. $\$ 19$ for the tho. (Hesular prive $\$ 13.25-30$ ghve $\$ 1.25$)
 Comblustion offre patrable at rate of $\$ 3$ after 10 days if you decide to
 keep books, and $\$ 3$ per monilh thereafter untll total of $\$ 12$ has been paid.
 Name

 - Address.
 \| City, Zone, state
 (OETSIDE U.SA-\$7.25 for TROUBLESHOOTING \& RFPAIR; - coslh rith order TRY APERATION; \$13.no for both books. Een L_ eash with orner. Molcy refunded if you return books in 10 diys.).

[^11]: RADIO-ELECTRONICS is paying good rates on acceptance for original and unusual articles on audio, television, $F M$ and $A M$ servicing, as well as articles on industrial elec. tronic equipment and applications. Send for a copy of our Authors' Guide. Address:

